18 November 2014 Reference: 0237233

Mr. Tim Skehan c/o Russell's Garden Center 397 Boston Post Road Wayland, MA 01778

RE: Transmittal of Groundwater Analytical Data Former Raytheon Facility

430 Boston Post Road, Wayland, Massachusetts

Dear Mr. Skehan:

On behalf of Raytheon Company (Raytheon), Environmental Resources Management (ERM) is submitting the results of groundwater sample analyses related to the Former Raytheon Facility located at 430 Boston Post Road in Wayland, Massachusetts (Site). These results are submitted pursuant to 310 CMR 40.1403(10) of the Massachusetts Contingency Plan (MCP).

ERM collected groundwater samples from three monitoring wells on your property on 9 September 2014. Samples were submitted to TestAmerica Laboratories, Inc. of Westfield, Massachusetts. Analytical results are attached to this letter. These analytical data were provided to the Massachusetts Department of Environmental Protection in the last MCP submittal.

Raytheon has implemented the Public Involvement Process in accordance with 310 CMR 40.1405. Documents pertaining to the Site can be found at the Board of Health Public Involvement Plan files, or at http://raytheon.erm.com/home.htm.

Environmental Resources Management

One Beacon Street, 5th Floor Boston, MA 02108 +1 617 646 7800 +1 617 267 6447 (fax)

http://www.erm.com

If you have any questions or comments, please contact the undersigned at (617) 646-7800 or Jonathan Hone, Raytheon Company, at (978) 436-8298.

Sincerely,

John C. Drobinski, P.G., LSP

Principal-in-Charge

Lyndsey Colburn, P.G.

Lypley Collins

Project Manager

enclosures: BWSC-123 - Notice of Environmental Sampling

Laboratory Analytical Reports

cc: Jonathan Hone, Raytheon Company

Ben Gould, CMG Environmental

PIP Repositories

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC123

This Notice is Related to: Release Tracking Number

3 -	13302
-----	-------

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

A. The address of the disposal site related to	this Notice	and Release Tracking Number (provided above):
Street Address: 430 Boston Post Road		
City/Town: Wayland	Zip Code:	01778
B. This notice is being provided to the follow	ing party:	
1. Name: Russell's Garden Center		
2. Street Address: 397 Boston Post Road		
City/Town: Wayland	Zip Code:	01778
C. This notice is being given to inform its red	cipient (the	party listed in Section B):
1. That environmental sampling will be/h	as been con	ducted at property owned by the recipient of this notice.
✓✓2. Of the results of environmental sample	ina conducte	ed at property owned by the recipient of this notice.
the environmental sampling must be atta		ched. (If item 2. above is checked, the analytical results from notice.)
D. Location of the property where the environ	nmental san	npling will be/has been conducted:
Street Address: 430 Boston Post Road		pg boniae boon conducted.
City/Town: Wayland	Zip Code:	01778
MCP phase of work during which the sampling	•	
☐ Immediate Response Action	_	e III Feasibility Evaluation
Release Abatement Measure	☐ Phas	e IV Remedy Implementation Plan
☐ Utility-related Abatement Measure☐ Phase I Initial Site Investigation		e V/Remedy Operation Status Temporary Solution Operation, Maintenance and Monitoring
Phase II Comprehensive Site Assessmen		r
2. Description of property where compling will be	o/boo boon ((specify)
3. Description of property where sampling will b		school/playground Other
	Imadotnai	(specify)
4. Description of the sampling locations and typ time of this notice.	es (e.g., soil	, groundwater, indoor air, soil gas) to the extent known at the
Collection of groundwater samples from	existing m	nonitoring wells.
E. Contact information related to the party pro	oviding this	notice:
Contact Name: Louis J. Burkhardt		
Street Address: 50 Apple Hill Drive City/Town: Tewksbury	Zin Code:	01876
Telephone: (978) 858-1885	Zip Code: Email: lo	uis_j_burkhardt@raytheon.com

Revised: 5/30/2014 Page 1 of 2

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC123

This Notice is Related to: Release Tracking Number

3

13302

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

MASSACHUSETTS REGULATIONS THAT REQUIRE THIS NOTICE

This notice is being provided pursuant to the Massachusetts Contingency Plan and the notification requirement at 310 CMR 40.1403(10). The Massachusetts Contingency Plan is a state regulation that specifies requirements for parties who are taking actions to address releases of chemicals (oil or hazardous material) to the environment.

THE PERSON(S) PROVIDING THIS NOTICE

This notice has been sent to you by the party who is addressing a release of oil or hazardous material to the environment at the location listed in **Section A** on the reverse side of this form. (The regulations refer to the area where the oil or hazardous material is present as the "disposal site".)

PURPOSE OF THIS NOTICE

When environmental samples are taken as part of an investigation of a release for which a notification to MassDEP has been made under the Massachusetts Contingency Plan (310 CMR 40.0300) on behalf of someone other than the owner of the property, the regulations require that the property owner (listed in **Section B** on the reverse side of this form) be given notice of the environmental sampling. The regulations also require that the property owner subsequently receive the analytical results following the analysis of the environmental samples.

Section C on the reverse side of this form indicates the circumstance under which you are receiving this notice at this time. If you are receiving this notice to inform you of the analytical results following the analysis of the environmental samples, you should also have received, as an attachment, a copy of analytical results. These results should indicate the number and type(s) of samples (e.g., soil, groundwater) analyzed, any chemicals identified, and the measured concentrations of those chemicals.

Section D on the reverse side of this form identifies the property where the environmental sampling will be/has been conducted, provides a description of the sampling locations within the property, and indicates the phase of work under the Massachusetts Contingency Plan regulatory process during which the samples will be/were collected.

FOR MORE INFORMATION

Information about the general process for addressing releases of oil or hazardous material under the Massachusetts Contingency Plan and related public involvement opportunities may be found at http://www.mass.gov/eea/agencies/massdep/cleanup. For more information regarding this notice, you may contact the party listed in **Section E** on the reverse side of this form. Information about the disposal site identified in Section A is also available in files at the Massachusetts Department of Environmental Protection. See http://public.dep.state.ma.us/SearchableSites2/Search.aspx to view site-specific files on-line or http://mass.gov/eea/agencies/massdep/about/contacts/conduct-a-file-review.html if you would like to make an appointment to see these files in person. Please reference the **Release Tracking Number** listed in the upper right hand corner on the reverse side of this form when making file review appointments.

Revised: 5/30/2014 Page 2 of 2

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-66696-1 Client Project/Site: IDS Wayland

For:

ERM-Northeast
One Beacon Steet
5th Floor
Boston, Massachusetts 02108

Attn: Lyndsey Colburn

Rin

Authorized for release by: 9/12/2014 11:03:15 AM Rich Emerich, Analyst V rich.emerich@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000 becky.mason@testamericainc.com

Three samples were collected from the Russell's Garden property. All other samples have been grayed out for ease of review.

Review your project results through

.....LINKS

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: ERM-Northeast Project/Site: IDS Wayland TestAmerica Job ID: 480-66696-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	7
Client Sample Results	12
Surrogate Summary	81
QC Sample Results	83
QC Association Summary	103
Lab Chronicle	105
Certification Summary	112
Method Summary	113
Sample Summary	114
Receipt Checklists	115
Chain of Custody	116

3

4

6

8

3

11

12

Definitions/Glossary

Client: ERM-Northeast Project/Site: IDS Wayland TestAmerica Job ID: 480-66696-1

Qualifiers

GC/MS VOA

Qualifier Description

* LCS or LCSD exceeds the control limits

RPD of the LCS and LCSD exceeds the control limits

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration

MDA Minimum detectable activity

EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

-

3

1

5

6

7

8

9

10

12

13

Case Narrative

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

Job ID: 480-66696-1

Laboratory: TestAmerica Buffalo

Narrative

Comments

Due to the dilutions required, per question G on the MassDEP Analytical Protocol Certification Form, the CAM reporting limits specified in this CAM protocol could not be achieved for some or all samples/analytes.

Receipt

The samples were received on 9/5/2014 at 12:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.0° C.

Receipt Exceptions

The container label for the following sample did not match the information listed on the Chain of Custody (COC): MW-1010D-20140904-02 (480-66696-33). The container labels lists MW-1010D-20140904-01 while the COC lists MW-1010D-20140904-02 (association made by comparing date and time of collection). The sample was logged in as shown on the COC.

GC/MS VOA

Method 8260C: With the exception of diluted samples, per question G on the MassDEP Analytical Protocol Certification Form, TestAmerica's routine reporting limits do not achieve the CAM reporting limits specified in this CAM protocol for 1,2-dibromo-3-chloropropane, Carbon Disulfide, Isopropyl Ether, Naphthalene, tert-Butyl Ethyl Ether, tert-Amyl Methyl Ether and Tetrahydrofuran.

Method 8260C: The continuing calibration verification (CCV) for 1,4dioxane associated with batch 200987 recovered above the MCP upper control limit. MCP protocol allows for 20% of the target compounds to be outside the 20% difference but not over 60% difference for difficult compounds.

Method 8260C: The laboratory control sample (LCS) and / or the laboratory control sample duplicate (LCSD) for batch 200987 exceeded control limits for the following analytes: 1,4 Dioxane. MCP protocol allows for 10% of the target compounds to be outside of the limits provided the recoveries are over 10%. The analyte is ND in the affected samples.

Method 8260C: The laboratory control sample (LCS) and / or the laboratory control sample duplicate (LCSD) for batch 201080 exceeded control limits for the following analyte: 2-Hexanone. Unlike the calibration standards, this is due to the coelution with n-Butyl Acetate in the spiking solution. This does not indicate a performance issue with the spike recovery, but rather the laboratory's ability to measure the two analytes together in a combined spiking solution. Through the use of spectral analysis, the two compounds can be distinguished from one another if present in a client sample.

Method 8260C: The continuing calibration verification (CCV) for Dichlorodifluoromethane and Bromoform associated with batch 201129 recovered above the MCP upper control limit. MCP protocol allows for 20% of the target compounds to be outside the 20% difference but not over 40% difference.

Method 8260C: The laboratory control sample (LCS) and / or the laboratory control sample duplicate (LCSD) for batch201129 exceeded control limits for the following analytes: 2-Butanone and 2-Hexanone. Unlike the calibration standards, this is due to the coelution with Ethyl Acetate and n-butyl Acetate, respectively, in the spiking solution. This does not indicate a performance issue with the spike recovery, but rather the laboratory's ability to measure the two analytes together in a combined spiking solution. Through the use of spectral analysis, the coeluted compounds can be distinguished from one another if present in a client sample.

Method 8260C: The laboratory control sample duplicate (LCSD) for batch 201129 exceeded control limits for the following analyte: Dichlorodifluoromethane. MCP protocol allows for 10% of the target compounds to be outside of the limits provided the recoveries are over 10%.

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-1017D-20140904-01 (480-66696-11). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) for Bromoform and Chlorodibromomethane associated with batch 201180 recovered above the MCP upper control limit. MCP protocol allows for 20% of the target compounds to be outside the 20% difference but not over 40% difference.

3

A

E

_

7

8

40

11

12

14

Case Narrative

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast Project/Site: IDS Wayland

Job ID: 480-66696-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

Method 8260C: The laboratory control sample (LCS) and / or the laboratory control sample duplicate (LCSD) for batch 201180 exceeded control limits for the following analyte: 2-Hexanone. Unlike the calibration standards, this is due to the coelution with n-butyl Acetate in the spiking solution. This does not indicate a performance issue with the spike recovery, but rather the laboratory's ability to measure the two analytes together in a combined spiking solution. Through the use of spectral analysis, the two compounds can be distinguished from one another if present in a client sample.

Method 8260C: The continuing calibration verification (CCV) for Bromoform and Chlorodibromomethane associated with batch 201080 recovered above the MCP upper control limit. MCP protocol allows for 20% of the target compounds to be outside the 20% difference but not over 40% difference.

Method 8260C: The %RPD of the laboratory control standard duplicate (LCSD) for preparation batch 201129 recovered outside control limits for the following analyte: 1,4-Dioxane .

Method 8260C: The laboratory control sample duplicate (LCSD) for batch 201180 exceeded control limits for the following analyte: Dichlorodifluoromethane. MCP protocol allows for 10% of the target compounds to be outside of the limits provided the recoveries are over 10%.

Method 8260C: The laboratory control sample duplicate (LCSD) for batch 201180 exceeded control limits for the following analyte: 2-Butanone. Unlike the calibration standards, this is due to the coelution with Ethyl Acetate in the spiking solution. This does not indicate a performance issue with the spike recovery, but rather the laboratory's ability to measure the two analytes together in a combined spiking solution. Through the use of spectral analysis, the two compounds can be distinguished from one another if present in a client sample

Method 8260C: The %RPD of the laboratory control standard duplicate (LCSD) for preparation batch 201180 recovered outside control limits for the following analyte: 2-Butanone.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

_

5

7

10

11

13

14

	MassDEP Analytical Protocol Certification Form								
Labo	ratory Name:	TestAmer	ica Buffalo	Project #:	480-6669	06-1			
Project Location: IDS Wayland RTN:									
This	form provide	es certifications for	the data set for	the following Labora	atory Sample ID Number(s	s):			
480-6	66696-1 [1-4 ⁻	1]							
Matrio	ces:	Groundwater/Surfa		Soil/Sediment	Drinking Water Air	☐Other:			
			-	ck all that apply be					
8260		7470/7471 Hg	Mass DEP VPH	8081 Pesticides	7196 Hex Cr	Mass DEP APH			
CAM 8270	SVOC	CAM III B 7010 Metals	CAM IV A L	S151 Herbicides	CAM VI B 8330 Explosives	CAM IX A TO-15 VOC			
CAM		CAM III C	CAM IV B	CAM V C	CAM VIII A	CAM IX B			
6010 CAM	Metals III A	6020 Metals	8082 PCB CAM V A	9012 / 9014/ 4500CN Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B				
	Affirmative	Responses to Que	estions A through	h F are required for "	Presumptive Certainty" s	tatus			
Α		served (including ter			d on the Chain-of-Custody, d prepared/analyzed within	Yes No			
В	B Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?								
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?								
D				orting requirements sp s for the Acquisition ar	pecified in CAM VII A, and Reporting of Analytical	Yes No			
Е	modification	(s)? (Refer to the inc	dividual method(s)	nethod conducted with) for a list of significan ete analyte list reporte	t modifications).	Yes No			
F	evaluated in	a laboratory narrati	ve (including all "N	lo" responses to Ques	<u> </u>	Yes No			
	· ·		<u> </u>	<u> </u>	sumptive Certainty" statu	S			
G	protocol(s)?			orting limits specified in		Yes No ¹			
	<u>Data User Note:</u> Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WCS-07-350								
Н	Were all Q0	performance stand	lards specified in t	the CAM protocol(s) a	chieved?	Yes No ¹			
I	Were result	s reported for the co	mplete analyte list	t specified in the selec	cted CAM protocol(s) ?	Yes No ¹			
1 All neç	gative responses n	nust be addressed in an attac	ched laboratory narrative.						
obtair	I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete.								
Signa	ture:	0::)		Position:	Technical Director, Test	America Westfield			
Printe	ed Name:	Richard	Emerich	Date:	9/12/14 1	0:55			
This forn	m has been electro	nically signed and approved.							

Client: ERM-Northeast Project/Site: IDS Wayland TestAmerica Job ID: 480-66696-1

Lab Sample ID: 480-66696-1

No Detections.

Client Sample ID: MW-217D-20140904-01 Lab Sample ID: 480-66696-2

No Detections.

Client Sample ID: MW-217M-20140904-01

Client Sample ID: TB-001-20140904-01

Lab Sample ID: 480-66696-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	2.3		1.0		ug/L	1	_	8260C	Total/NA
1,1-Dichloroethene	1.0		1.0		ug/L	1		8260C	Total/NA
1,2-Dichlorobenzene	2.1		1.0		ug/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	1.1		1.0		ug/L	1		8260C	Total/NA
Methyl tert-butyl ether	7.6		1.0		ug/L	1		8260C	Total/NA
Trichloroethene	8.7		1.0		ug/L	1		8260C	Total/NA

Client Sample ID: MW-217S-20140904-01 Lab Sample ID: 480-66696-4

No Detections.

15

This Detection Summary does not include radiochemical test results.

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast Project/Site: IDS Wayland

This Detection Summary does not include radiochemical test results.

TestAmerica Job ID: 480-66696-1

Project/Site: IDS Wayland

This Detection Summary does not include radiochemical test results.

Client: ERM-Northeast

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

2

5

4

5

9

10

12

14

1

This Detection Summary does not include radiochemical test results.

Client: ERM-Northeast
Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

3

4

5

9

11

12

14

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

5

4

6

7

10

11

13

14

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast Project/Site: IDS Wayland

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1 Project/Site: IDS Wayland

Client Sample ID: MW-217D-20140904-01

Lab Sample ID: 480-66696-2 Date Collected: 09/04/14 11:35 Date Received: 09/05/14 00:30

Matrix: Water

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued) Dil Fac Analyte Result Qualifier MDL Unit D Prepared Analyzed 1,3-Dichlorobenzene ND 1.0 09/05/14 17:05 ug/L

1,3-Dichlorobenzene	ND	1.0	ug/L	09/05/14 17:05 1
1,3-Dichloropropane	ND	1.0	ug/L	09/05/14 17:05 1
1,4-Dichlorobenzene	ND	1.0	ug/L	09/05/14 17:05 1
1,4-Dioxane	ND *	50	ug/L	09/05/14 17:05 1
2,2-Dichloropropane	ND	1.0	ug/L	09/05/14 17:05 1
2-Butanone (MEK)	ND	10	ug/L	09/05/14 17:05 1
2-Chlorotoluene	ND	1.0	ug/L	09/05/14 17:05 1
2-Hexanone	ND	10	ug/L	09/05/14 17:05 1
4-Chlorotoluene	ND	1.0	ug/L	09/05/14 17:05 1
4-Isopropyltoluene	ND	1.0	ug/L	09/05/14 17:05 1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	09/05/14 17:05 1
Acetone	ND	50	ug/L	09/05/14 17:05 1
Benzene	ND	1.0	ug/L	09/05/14 17:05 1
Bromobenzene	ND	1.0	ug/L	09/05/14 17:05 1
Bromoform	ND	1.0	ug/L	09/05/14 17:05 1
Bromomethane	ND	2.0	ug/L	09/05/14 17:05 1
Carbon disulfide	ND	10	ug/L	09/05/14 17:05 1
Carbon tetrachloride	ND	1.0	ug/L	09/05/14 17:05 1
Chlorobenzene	ND	1.0	ug/L	09/05/14 17:05 1
Chlorobromomethane	ND	1.0	ug/L	09/05/14 17:05 1
Chlorodibromomethane	ND	0.50	ug/L	09/05/14 17:05 1
Chloroethane	ND	2.0	ug/L	09/05/14 17:05 1
Chloroform	ND	1.0	ug/L	09/05/14 17:05 1
Chloromethane	ND	2.0	ug/L	09/05/14 17:05 1
cis-1,2-Dichloroethene	ND	1.0	ug/L	09/05/14 17:05 1
cis-1,3-Dichloropropene	ND	0.40	ug/L	09/05/14 17:05 1
Dichlorobromomethane	ND	0.50	ug/L	09/05/14 17:05 1
Dichlorodifluoromethane	ND	1.0	ug/L	09/05/14 17:05 1
Ethyl ether	ND	1.0	ug/L	09/05/14 17:05 1
Ethylbenzene	ND	1.0	ug/L	09/05/14 17:05 1
Ethylene Dibromide	ND	1.0	ug/L	09/05/14 17:05 1
Hexachlorobutadiene	ND	0.40	ug/L	09/05/14 17:05 1
Isopropyl ether	ND	10	ug/L	09/05/14 17:05 1
Isopropylbenzene	ND	1.0	ug/L	09/05/14 17:05 1
Methyl tert-butyl ether	ND	1.0	ug/L	09/05/14 17:05 1
Methylene Chloride	ND	1.0	ug/L	09/05/14 17:05 1
m-Xylene & p-Xylene	ND	2.0	ug/L	09/05/14 17:05 1
Naphthalene	ND	5.0	ug/L	09/05/14 17:05 1
n-Butylbenzene				09/05/14 17:05 1
N-Propylbenzene	ND ND	1.0 1.0	ug/L ug/L	09/05/14 17:05 1
* *	ND	1.0		09/05/14 17:05 1
o-Xylene sec-Butylbenzene			ug/L	09/05/14 17:05 1
	ND	1.0	ug/L	
Styrene Tert-amyl methyl ether	ND ND	1.0	ug/L	09/05/14 17:05 1
		5.0	ug/L	09/05/14 17:05 1
Tert-butyl ethyl ether	ND	5.0	ug/L	09/05/14 17:05 1
tert-Butylbenzene	ND	1.0	ug/L	09/05/14 17:05 1
Tetrachloroethene	ND	1.0	ug/L	09/05/14 17:05 1
Tetrahydrofuran	ND	10	ug/L	09/05/14 17:05 1
Toluene	ND	1.0	ug/L	09/05/14 17:05 1

Client: ERM-Northeast Project/Site: IDS Wayland TestAmerica Job ID: 480-66696-1

Lab Sample ID: 480-66696-2

Matrix: Water

Client Sample ID: MW-217D-20140904-01

Date Collected: 09/04/14 11:35 Date Received: 09/05/14 00:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/05/14 17:05	1
trans-1,3-Dichloropropene	ND		0.40		ug/L			09/05/14 17:05	1
Trichloroethene	ND		1.0		ug/L			09/05/14 17:05	1
Trichlorofluoromethane	ND		1.0		ug/L			09/05/14 17:05	1
Vinyl chloride	ND		1.0		ug/L			09/05/14 17:05	1
Dibromomethane	ND		1.0		ug/L			09/05/14 17:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		70 - 130			-		09/05/14 17:05	1
1,2-Dichloroethane-d4 (Surr)	97		70 - 130					09/05/14 17:05	1
4-Bromofluorobenzene (Surr)	98		70 - 130					09/05/14 17:05	1

RL

1.0

MDL Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Client Sample ID: MW-217M-20140904-01

Method: 8260C - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

Date Collected: 09/04/14 11:25

Date Received: 09/05/14 00:30

1,1,1,2-Tetrachloroethane

4-Methyl-2-pentanone (MIBK)

Acetone

Benzene

Bromoform

Bromobenzene

Bromomethane

Analyte

Lab	Sample	ID:	480	-66	6696-3	

Analyzed

09/05/14 17:28

Prepared

D

Matrix: Water

Dil Fac

1, 1, 1,2-161140110106114116	ND	1.0	ug/L	03/03/14 17.20	
1,1,1-Trichloroethane	ND	1.0	ug/L	09/05/14 17:28	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	09/05/14 17:28	1
1,1,2-Trichloroethane	ND	1.0	ug/L	09/05/14 17:28	1
1,1-Dichloroethane	2.3	1.0	ug/L	09/05/14 17:28	1
1,1-Dichloroethene	1.0	1.0	ug/L	09/05/14 17:28	1
1,1-Dichloropropene	ND	1.0	ug/L	09/05/14 17:28	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L	09/05/14 17:28	1
1,2,3-Trichloropropane	ND	1.0	ug/L	09/05/14 17:28	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L	09/05/14 17:28	1
1,2,4-Trimethylbenzene	ND	1.0	ug/L	09/05/14 17:28	1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L	09/05/14 17:28	1
1,2-Dichlorobenzene	2.1	1.0	ug/L	09/05/14 17:28	1
1,2-Dichloroethane	ND	1.0	ug/L	09/05/14 17:28	1
1,2-Dichloropropane	ND	1.0	ug/L	09/05/14 17:28	1
1,3,5-Trimethylbenzene	ND	1.0	ug/L	09/05/14 17:28	1
1,3-Dichlorobenzene	ND	1.0	ug/L	09/05/14 17:28	1
1,3-Dichloropropane	ND	1.0	ug/L	09/05/14 17:28	1
1,4-Dichlorobenzene	ND	1.0	ug/L	09/05/14 17:28	1
1,4-Dioxane	ND *	50	ug/L	09/05/14 17:28	1
2,2-Dichloropropane	ND	1.0	ug/L	09/05/14 17:28	1
2-Butanone (MEK)	ND	10	ug/L	09/05/14 17:28	1
2-Chlorotoluene	ND	1.0	ug/L	09/05/14 17:28	1
2-Hexanone	ND	10	ug/L	09/05/14 17:28	1
4-Chlorotoluene	ND	1.0	ug/L	09/05/14 17:28	1
4-Isopropyltoluene	ND	1.0	ug/L	09/05/14 17:28	1

TestAmerica Buffalo

09/05/14 17:28

09/05/14 17:28

09/05/14 17:28

09/05/14 17:28

09/05/14 17:28 09/05/14 17:28

Page 15 of 119

10

50

1.0

1.0

1.0

2.0

Client: ERM-Northeast Project/Site: IDS Wayland TestAmerica Job ID: 480-66696-1

Lab Sample ID: 480-66696-3

Matrix: Water

Client Sample ID: MW-217M-20140904-01

Date Collected: 09/04/14 11:25 Date Received: 09/05/14 00:30

Analyte	Result Qualifier	r RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Carbon disulfide	ND		ug/L		09/05/14 17:28	
Carbon tetrachloride	ND	1.0	ug/L		09/05/14 17:28	1
Chlorobenzene	ND	1.0	ug/L		09/05/14 17:28	1
Chlorobromomethane	ND	1.0	ug/L		09/05/14 17:28	1
Chlorodibromomethane	ND	0.50	ug/L		09/05/14 17:28	1
Chloroethane	ND	2.0	ug/L		09/05/14 17:28	1
Chloroform	ND	1.0	ug/L		09/05/14 17:28	1
Chloromethane	ND	2.0	ug/L		09/05/14 17:28	1
cis-1,2-Dichloroethene	1.1	1.0	ug/L		09/05/14 17:28	1
cis-1,3-Dichloropropene	ND	0.40	ug/L		09/05/14 17:28	1
Dichlorobromomethane	ND	0.50	ug/L		09/05/14 17:28	1
Dichlorodifluoromethane	ND	1.0	ug/L		09/05/14 17:28	1
Ethyl ether	ND	1.0	ug/L		09/05/14 17:28	
Ethylbenzene	ND	1.0	ug/L		09/05/14 17:28	
Ethylene Dibromide	ND	1.0	ug/L		09/05/14 17:28	1
Hexachlorobutadiene	ND	0.40	ug/L		09/05/14 17:28	
Isopropyl ether	ND	10	ug/L		09/05/14 17:28	
Isopropylbenzene	ND	1.0	ug/L		09/05/14 17:28	
Methyl tert-butyl ether	7.6	1.0	ug/L		09/05/14 17:28	
Methylene Chloride	ND	1.0	ug/L		09/05/14 17:28	
m-Xylene & p-Xylene	ND	2.0	ug/L		09/05/14 17:28	
Naphthalene	ND	5.0	ug/L		09/05/14 17:28	
n-Butylbenzene	ND	1.0	ug/L		09/05/14 17:28	
N-Propylbenzene	ND	1.0	ug/L		09/05/14 17:28	
o-Xylene	ND	1.0	ug/L		09/05/14 17:28	
sec-Butylbenzene	ND	1.0	ug/L		09/05/14 17:28	
Styrene	ND	1.0	ug/L		09/05/14 17:28	
Tert-amyl methyl ether	ND	5.0	ug/L		09/05/14 17:28	
Tert-butyl ethyl ether	ND	5.0	ug/L		09/05/14 17:28	
tert-Butylbenzene	ND	1.0	ug/L		09/05/14 17:28	
Tetrachloroethene	ND	1.0	ug/L		09/05/14 17:28	
Tetrahydrofuran	ND	10	ug/L		09/05/14 17:28	
Toluene	ND	1.0	ug/L		09/05/14 17:28	
trans-1,2-Dichloroethene	ND	1.0	ug/L		09/05/14 17:28	
trans-1,3-Dichloropropene	ND	0.40	ug/L		09/05/14 17:28	1
Trichloroethene	8.7	1.0	ug/L		09/05/14 17:28	
Trichlorofluoromethane	ND	1.0	ug/L		09/05/14 17:28	
Vinyl chloride	ND	1.0	ug/L		09/05/14 17:28	,
Dibromomethane	ND	1.0	ug/L		09/05/14 17:28	1
Surrogate	%Recovery Qualified	r Limits		Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	102	70 - 130			09/05/14 17:28	1
1,2-Dichloroethane-d4 (Surr)	102	70 - 130			09/05/14 17:28	1
4-Bromofluorobenzene (Surr)	101	70 - 130			09/05/14 17:28	1

2

4

7

9

11

12

14

Client: ERM-Northeast Project/Site: IDS Wayland TestAmerica Job ID: 480-66696-1

Lab Sample ID: 480-66696-4

Matrix: Water

Client Sample ID: MW-217S-20140904-01

Date Collected: 09/04/14 11:15

Method: 8260C - Volatile Organ Analyte		GC/MS) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L		<u> </u>	09/05/14 17:53	1
1,1,1-Trichloroethane	ND		1.0		ug/L			09/05/14 17:53	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			09/05/14 17:53	1
1,1,2-Trichloroethane	ND		1.0		ug/L			09/05/14 17:53	1
1,1-Dichloroethane	ND		1.0		ug/L			09/05/14 17:53	1
1,1-Dichloroethene	ND		1.0		ug/L			09/05/14 17:53	1
1,1-Dichloropropene	ND		1.0		ug/L			09/05/14 17:53	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			09/05/14 17:53	1
1,2,3-Trichloropropane	ND		1.0		ug/L			09/05/14 17:53	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			09/05/14 17:53	1
1,2,4-Trimethylbenzene	ND		1.0		ug/L			09/05/14 17:53	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			09/05/14 17:53	1
1,2-Dichlorobenzene	ND		1.0		ug/L			09/05/14 17:53	1
1,2-Dichloroethane	ND		1.0		ug/L			09/05/14 17:53	1
1,2-Dichloropropane	ND		1.0		ug/L			09/05/14 17:53	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			09/05/14 17:53	1
1,3-Dichlorobenzene	ND		1.0		ug/L			09/05/14 17:53	1
1,3-Dichloropropane	ND		1.0		ug/L			09/05/14 17:53	1
1,4-Dichlorobenzene	ND		1.0		ug/L			09/05/14 17:53	1
1,4-Dioxane	ND	*	50		ug/L			09/05/14 17:53	1
2,2-Dichloropropane	ND		1.0		ug/L			09/05/14 17:53	1
2-Butanone (MEK)	ND		10		ug/L			09/05/14 17:53	1
2-Chlorotoluene	ND		1.0		ug/L			09/05/14 17:53	1
2-Hexanone	ND		10		ug/L			09/05/14 17:53	1

., .,			~g/ =	
1,1-Dichloroethane	ND	1.0	ug/L	09/05/14 17:53 1
1,1-Dichloroethene	ND	1.0	ug/L	09/05/14 17:53 1
1,1-Dichloropropene	ND	1.0	ug/L	09/05/14 17:53 1
1,2,3-Trichlorobenzene	ND	1.0	ug/L	09/05/14 17:53 1
1,2,3-Trichloropropane	ND	1.0	ug/L	09/05/14 17:53 1
1,2,4-Trichlorobenzene	ND	1.0	ug/L	09/05/14 17:53 1
1,2,4-Trimethylbenzene	ND	1.0	ug/L	09/05/14 17:53 1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L	09/05/14 17:53 1
1,2-Dichlorobenzene	ND	1.0	ug/L	09/05/14 17:53 1
1,2-Dichloroethane	ND	1.0	ug/L	09/05/14 17:53 1
1,2-Dichloropropane	ND	1.0	ug/L	09/05/14 17:53 1
1,3,5-Trimethylbenzene	ND	1.0	ug/L	09/05/14 17:53 1
1,3-Dichlorobenzene	ND	1.0	ug/L	09/05/14 17:53 1
1,3-Dichloropropane	ND	1.0	ug/L	09/05/14 17:53 1
1,4-Dichlorobenzene	ND	1.0	ug/L	09/05/14 17:53 1
1,4-Dioxane	ND *	50	ug/L	09/05/14 17:53 1
2,2-Dichloropropane	ND	1.0	ug/L	09/05/14 17:53 1
2-Butanone (MEK)	ND	10	ug/L	09/05/14 17:53 1
2-Chlorotoluene	ND	1.0	ug/L	09/05/14 17:53 1
2-Hexanone	ND	10	ug/L	09/05/14 17:53 1
4-Chlorotoluene	ND	1.0	ug/L	09/05/14 17:53 1
4-Isopropyltoluene	ND	1.0	ug/L	09/05/14 17:53 1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	09/05/14 17:53 1
Acetone	ND	50	ug/L	09/05/14 17:53 1
Benzene	ND	1.0	ug/L	09/05/14 17:53 1
Bromobenzene	ND	1.0	ug/L	09/05/14 17:53 1
Bromoform	ND	1.0	ug/L	09/05/14 17:53 1
Bromomethane	ND	2.0	ug/L	09/05/14 17:53 1
Carbon disulfide	ND	10	ug/L	09/05/14 17:53 1
Carbon tetrachloride	ND	1.0	ug/L	09/05/14 17:53 1
Chlorobenzene	ND	1.0	ug/L	09/05/14 17:53 1
Chlorobromomethane	ND	1.0	ug/L	09/05/14 17:53 1
Chlorodibromomethane	ND	0.50	ug/L	09/05/14 17:53 1
Chloroethane	ND	2.0	ug/L	09/05/14 17:53 1
Chloroform	ND	1.0	ug/L	09/05/14 17:53 1
Chloromethane	ND	2.0	ug/L	09/05/14 17:53 1
cis-1,2-Dichloroethene	ND	1.0	ug/L	09/05/14 17:53 1
cis-1,3-Dichloropropene	ND	0.40	ug/L	09/05/14 17:53 1
Dichlorobromomethane	ND	0.50	ug/L	09/05/14 17:53 1
Dichlorodifluoromethane	ND	1.0	ug/L	09/05/14 17:53 1
Ethyl ether	ND	1.0	ug/L	09/05/14 17:53 1
Ethylbenzene	ND	1.0	ug/L	09/05/14 17:53 1
Ethylene Dibromide	ND	1.0	ug/L	09/05/14 17:53 1
Hexachlorobutadiene	ND	0.40	ug/L	09/05/14 17:53 1
Isopropyl ether	ND	10	ug/L	09/05/14 17:53 1

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1 Project/Site: IDS Wayland

Client Sample ID: MW-217S-20140904-01

Lab Sample ID: 480-66696-4 Date Collected: 09/04/14 11:15

Matrix: Water

Date Received: 09/05/14 00:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		1.0		ug/L			09/05/14 17:53	1
Methyl tert-butyl ether	ND		1.0		ug/L			09/05/14 17:53	1
Methylene Chloride	ND		1.0		ug/L			09/05/14 17:53	1
m-Xylene & p-Xylene	ND		2.0		ug/L			09/05/14 17:53	1
Naphthalene	ND		5.0		ug/L			09/05/14 17:53	1
n-Butylbenzene	ND		1.0		ug/L			09/05/14 17:53	1
N-Propylbenzene	ND		1.0		ug/L			09/05/14 17:53	1
o-Xylene	ND		1.0		ug/L			09/05/14 17:53	1
sec-Butylbenzene	ND		1.0		ug/L			09/05/14 17:53	1
Styrene	ND		1.0		ug/L			09/05/14 17:53	1
Tert-amyl methyl ether	ND		5.0		ug/L			09/05/14 17:53	1
Tert-butyl ethyl ether	ND		5.0		ug/L			09/05/14 17:53	1
tert-Butylbenzene	ND		1.0		ug/L			09/05/14 17:53	1
Tetrachloroethene	ND		1.0		ug/L			09/05/14 17:53	1
Tetrahydrofuran	ND		10		ug/L			09/05/14 17:53	1
Toluene	ND		1.0		ug/L			09/05/14 17:53	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/05/14 17:53	1
trans-1,3-Dichloropropene	ND		0.40		ug/L			09/05/14 17:53	1
Trichloroethene	ND		1.0		ug/L			09/05/14 17:53	1
Trichlorofluoromethane	ND		1.0		ug/L			09/05/14 17:53	1
Vinyl chloride	ND		1.0		ug/L			09/05/14 17:53	1
Dibromomethane	ND		1.0		ug/L			09/05/14 17:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Toluene-d8 (Surr)	107	70 - 130	 09/05/14 17:53	1
1,2-Dichloroethane-d4 (Surr)	94	70 - 130	09/05/14 17:53	1
4-Bromofluorobenzene (Surr)	97	70 - 130	09/05/14 17:53	1

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1 Project/Site: IDS Wayland

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

3

4

_

9

10

12

14

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

9

3

_

7

9

10

12

14

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast Project/Site: IDS Wayland

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast Project/Site: IDS Wayland

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

2

E

6

8

9

11

13

14

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

2

3

4

6

_

9

10

12

11

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast Project/Site: IDS Wayland

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

Project/Site: IDS Wayland

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1

2

3

4

6

Ω

9

11

12

14

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

4

5

4

9

10

12

14

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast Project/Site: IDS Wayland

TestAmerica Buffalo

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

3

4

6

8

9

11

12

14

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

3

4

9

10

12

14

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

3

4

9

10

12

1/

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

2

3

4

0

9

44

12

14

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

3

4

6

Ω

9

11

13

14

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

J

4

6

9

10

16

14

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

2

3

4

_

_

9

10

12

14

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

2

3

4

Q

10

12

1/

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

3

4

Q

9

10

12

14

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

G

3

4

6

9

10

12

4 1

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

3

4

0

9

10

12

11

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

1

3

__

6

<u>۾</u>

9

10

12

14

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

3

4

q

10

12

13

14

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

Л

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

1

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

3

Ţ

6

Q

9

10

12

4 1

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

-

K

4

_

9

10

12

14

TestAmerica Job ID: 480-66696-1

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

3

4

6

9

10

12

1A

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

3

4

6

Ω

9

10

12

14

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

3

4

9

44

12

14

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

-0

-+

6

<u>و</u>

9

10

12

11

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

1

3

-

b

8

9

11

13

14

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Joh ID: 480-66606-1

TestAmerica Job ID: 480-66696-1

TestAmerica Buffalo

Client: ERM-Northeast

Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast
Project/Site: IDS Wayland
TestAmerica Job ID: 480-66696-1

2

6

9

10

12

. .

14

Client: ERM-Northeast
Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

1

4

9

10

12

13

1:

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				_	Recovery (Acceptance Limits)
		TOL	12DCE	BFB	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	
480-66696-1	TB-001-20140904-01	120	119	130	
480-66696-2	MW-217D-20140904-01	102	97	98	
480-66696-3	MW-217M-20140904-01	102	102	101	
480-66696-4	MW-217S-20140904-01	107	94	97	
480-66696-5	MW-1024D-20140904-01	103	100	94	
480-66696-6	MW-1025M-20140904-01	92	87	108	
480-66696-7	MW-1025D-20140904-01	95	90	111	
480-66696-8	MW-1019B-20140904-01	91	90	109	
480-66696-9	MW-1020-20140904-01	93	90	110	
480-66696-10	MW-1018-20140904-01	93	83	112	
480-66696-11	MW-1017D-20140904-01	95	87	110	
480-66696-11 - DL	MW-1017D-20140904-01	92	85	109	
480-66696-12	MW-1015D-20140904-01	93	92	109	
480-66696-13	MW-1033-20140904-01	91	90	105	
		92			
480-66696-14	MW-1027-20140904-01		89	104	
480-66696-15	MW-1028-20140904-01	93	90	107	
480-66696-16	MW-1030-20140904-01	93	91	108	
480-66696-17	MW-1031-20140904-01	93	88	108	
480-66696-18	MW-1032-20140904-01	93	88	110	
480-66696-19	MW-1022-20140904-01	91	86	110	
480-66696-20	MW-1023-20140904-01	93	88	109	
480-66696-21	MW-1013-20140904-01	93	87	109	
480-66696-22	MW-1034-20140904-01	93	88	111	
480-66696-23	DUP-004-20140904-01	93	89	108	
480-66696-24	DUP-003-20140904-01	91	85	107	
480-66696-25	MW-1001M-20140904-01	92	87	106	
480-66696-26	MW-1001B-20140904-01	92	89	108	
480-66696-27	MW-1003-20140904-01	92	90	107	
480-66696-28	MW-1004-20140904-01	92	88	108	
480-66696-29	MW-1005-20140904-01	91	90	107	
480-66696-30	MW-1006-20140904-01	91	90	106	
480-66696-31	MW-1008-20140904-01	92	84	114	
480-66696-32	MW-1010M-20140904-01	91	85	112	
480-66696-33	MW-1010D-20140904-02	89	82	109	
480-66696-34	MW-1011-20140904-01	92	83	110	
480-66696-35	MW-1016D-20140904-01	92	84	110	
480-66696-36	MW-1009-20140904-01	90	84	107	
480-66696-37	DUP-001-20140904-01	90	86	108	
480-66696-38	DUP-002-20140904-01	92	86	111	
480-66696-39	SEN-3-20140904-01	91	87	113	
480-66696-40	SEN-2M-20140904-01	91	87	110	
480-66696-41	SEN-2D-20140904-01	90	88	108	
LCS 480-200987/4	Lab Control Sample	103	97	93	
LCS 480-201080/5	Lab Control Sample	95	96	113	
LCS 480-201129/5	Lab Control Sample	94	82	114	
LCS 480-201180/5	Lab Control Sample	94	88	116	
LCSD 480-200987/5	Lab Control Sample Dup	95	97	92	
LCSD 480-201080/6	Lab Control Sample Dup	94	95	115	
LCSD 480-201129/6	Lab Control Sample Dup	95	93	114	

TestAmerica Buffalo

2

3

0

4 4

12

14

Surrogate Summary

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water Prep Type: Total/NA

				Percent Surr
		TOL	12DCE	BFB
₋ab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)
CSD 480-201180/6	Lab Control Sample Dup	94	88	117
MB 480-200987/7	Method Blank	103	98	102
MB 480-201080/8	Method Blank	93	88	108
MB 480-201129/8	Method Blank	93	87	111
MB 480-201180/8	Method Blank	92	83	111

Surrogate Legend

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

2

3

4

5

7

8

9

12

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-200987/7

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			09/05/14 12:p1	
1,1,1-Trichloroethane	ND		1.0		ug/L			09/05/14 12:p1	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			09/05/14 12:p1	
1,1,2-Trichloroethane	ND		1.0		ug/L			09/05/14 12:p1	
1,1-Dichloroethane	ND		1.0		ug/L			09/05/14 12:p1	
1,1-Dichloroethene	ND		1.0		ug/L			09/05/14 12:p1	
1,1-Dichloro3ro3ene	ND		1.0		ug/L			09/05/14 12:p1	
1,2,p-Trichlorobenzene	ND		1.0		ug/L			09/05/14 12:p1	
1,2,p-Trichloro3ro3ane	ND		1.0		ug/L			09/05/14 12:p1	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			09/05/14 12:p1	
1,2,4-Trimethylbenzene	ND		1.0		ug/L			09/05/14 12:p1	
1,2-Dibromo-p-Chloro3ro3ane	ND		5.0		ug/L			09/05/14 12:p1	
1,2-Dichlorobenzene	ND		1.0		ug/L			09/05/14 12:p1	
1,2-Dichloroethane	ND		1.0		ug/L			09/05/14 12:p1	
1,2-Dichloro3ro3ane	ND		1.0		ug/L			09/05/14 12:p1	
1,p,5-Trimethylbenzene	ND		1.0		ug/L			09/05/14 12:p1	
1,p-Dichlorobenzene	ND		1.0		ug/L			09/05/14 12:p1	
1,p-Dichloro3ro3ane	ND		1.0		ug/L			09/05/14 12:p1	
1,4-Dichlorobenzene	ND		1.0		ug/L			09/05/14 12:p1	
1,4-Dioxane	ND		50		ug/L			09/05/14 12:p1	
2,2-Dichloro3ro3ane	ND		1.0		ug/L			09/05/14 12:p1	
2-* utanone BME(K	ND		10		ug/L			09/05/14 12:p1	
2-Chlorotoluene	ND		1.0		ug/L			09/05/14 12:p1	
2-) exanone	ND		10		ug/L			09/05/14 12:p1	
4-Chlorotoluene	ND		1.0		ug/L			09/05/14 12:p1	
4-Iso3ro3yltoluene	ND		1.0		ug/L			09/05/14 12:p1	
4-Methyl-2-3entanone BMI* (K	ND		10		ug/L			09/05/14 12:p1	
Acetone	ND		50		ug/L			09/05/14 12:p1	
* enzene	ND		1.0		ug/L			09/05/14 12:p1	
* romobenzene	ND		1.0		ug/L			09/05/14 12:p1	
* romol d rm	ND		1.0		ug/L			09/05/14 12:p1	
* romomethane	ND		2.0		ug/L			09/05/14 12:p1	
Carbon disull id e	ND		10		ug/L			09/05/14 12:p1	
Carbon tetrachloride	ND		1.0		ug/L			09/05/14 12:p1	
Chlorobenzene	ND		1.0		ug/L			09/05/14 12:p1	
Chlorobromomethane	ND		1.0		ug/L			09/05/14 12:p1	
Chlorodibromomethane	ND		0.50		ug/L			09/05/14 12:p1	
Chloroethane	ND		2.0		ug/L			09/05/14 12:p1	
Chloroldrm	ND		1.0		ug/L			09/05/14 12:p1	
Chloromethane	ND		2.0		ug/L			09/05/14 12:p1	
cis-1,2-Dichloroethene	ND		1.0		ug/L			09/05/14 12:p1	
cis-1,p-Dichloro3ro3ene	ND		0.40		ug/L			09/05/14 12:p1	
Dichlorobromomethane	ND		0.50		ug/L ug/L			09/05/14 12:p1	
Dichlorodil Huoromethane	ND		1.0		ug/L			09/05/14 12:p1	
Ethyl ether	ND		1.0		ug/L			09/05/14 12:p1	
Ethylbenzene	ND		1.0		ug/L ug/L			09/05/14 12:p1	
Ethylene Dibromide	ND ND		1.0					•	
) exachlorobutadiene	ND ND		0.40		ug/L ug/L			09/05/14 12:p1 09/05/14 12:p1	

TestAmerica * ullalo

Page 83 of 119

3

F

6

8

10

12

1 1

4.

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 480-200987/7

Matrix: Water

Analysis Batch: 200987

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iso3ro3yl ether	ND		10		ug/L			09/05/14 12:p1	1
lso3ro3ylbenzene	ND		1.0		ug/L			09/05/14 12:p1	1
Methyl tert-butyl ether	ND		1.0		ug/L			09/05/14 12:p1	1
Methylene Chloride	ND		1.0		ug/L			09/05/14 12:p1	1
m-f ylene X 3-f ylene	ND		2.0		ug/L			09/05/14 12:p1	1
Na3hthalene	ND		5.0		ug/L			09/05/14 12:p1	1
n-* utylbenzene	ND		1.0		ug/L			09/05/14 12:p1	1
N-Pro3ylbenzene	ND		1.0		ug/L			09/05/14 12:p1	1
o-f ylene	ND		1.0		ug/L			09/05/14 12:p1	1
sec-* utylbenzene	ND		1.0		ug/L			09/05/14 12:p1	1
Styrene	ND		1.0		ug/L			09/05/14 12:p1	1
Tert-amyl methyl ether	ND		5.0		ug/L			09/05/14 12:p1	1
Tert-butyl ethyl ether	ND		5.0		ug/L			09/05/14 12:p1	1
tert-* utylbenzene	ND		1.0		ug/L			09/05/14 12:p1	1
Tetrachloroethene	ND		1.0		ug/L			09/05/14 12:p1	1
Tetrahydrol·liran	ND		10		ug/L			09/05/14 12:p1	1
Toluene	ND		1.0		ug/L			09/05/14 12:p1	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/05/14 12:p1	1
trans-1,p-Dichloro3ro3ene	ND		0.40		ug/L			09/05/14 12:p1	1
Trichloroethene	ND		1.0		ug/L			09/05/14 12:p1	1
Trichloroffluoromethane	ND		1.0		ug/L			09/05/14 12:p1	1
&inyl chloride	ND		1.0		ug/L			09/05/14 12:p1	1
Dibromomethane	ND		1.0		ug/L			09/05/14 12:p1	1

	IVID	IVID						
Surrogate	%Recovery	Qualifier	Limits	Prepa	red An	alyzed	Dil Fac	
Toluene-d8 (Surr)	120		72 - 102		2392/	915 14601	1	
1:4-, Dcloroelct ne-d5 (Surr)	38		72 - 102		2392/	915 14601	1	
5-aroBortuorof enbene (Surr)	124		72 - 102		2392/	915 14601	1	

Lab Sample ID: LCS 480-200987/4

Matrix: Water

Analysis Batch: 200987

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	25.0	25.2		ug/L		101	V0 ₋ 1p0
1,1,1-Trichloroethane	25.0	25.8		ug/L		10p	V0 ₋ 1p0
1,1,2,2-Tetrachloroethane	25.0	25.6		ug/L		102	V0 ₋ 1p0
1,1,2-Trichloroethane	25.0	2p.p		ug/L		9p	V0 - 1p0
1,1-Dichloroethane	25.0	24.1		ug/L		96	V0 ₋ 1p0
1,1-Dichloroethene	25.0	26.0		ug/L		104	V0 ₋ 1p0
1,1-Dichloro3ro3ene	25.0	25.6		ug/L		102	V0 ₋ 1p0
1,2,p-Trichlorobenzene	25.0	29.1		ug/L		116	V0 ₋ 1p0
1,2,p-Trichloro3ro3ane	25.0	25.p		ug/L		101	V0 - 1p0
1,2,4-Trichlorobenzene	25.0	28.8		ug/L		115	V0 ₋ 1p0
1,2,4-Trimethylbenzene	25.0	26.2		ug/L		105	V0 ₋ 1p0
1,2-Dibromo-p-Chloro3ro3ane	25.0	29.2		ug/L		11V	V0 ₋ 1p0
1,2-Dichlorobenzene	25.0	28.0		ug/L		112	V0 ₋ 1p0
1,2-Dichloroethane	25.0	24.V		ug/L		99	V0 - 1p0

TestAmerica * ullalo

Page 84 of 119

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Lab Sample ID: LCS 480-200987/4

Analysis Batch: 200987	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,2-Dichloro3ro3ane		25.9	quamici	ug/L		104	V0 - 1p0
1,p,5-Trimethylbenzene	25.0	26.6		ug/L		106	V0 - 1p0
1,p-Dichlorobenzene	25.0	26.1		ug/L		104	V0 - 1p0 V0 - 1p0
1,p-Dichloro3ro3ane	25.0	24.2		ug/L		9V	V0 - 1p0 V0 - 1p0
1,4-Dichlorobenzene	25.0	26.6				106	
	500	20.0 V24	7	ug/L			V0 - 1p0
1,4-Dioxane			1	ug/L		145	V0 - 1p0
2,2-Dichloro3ro3ane	25.0	25.4		ug/L		102	V0 _ 1p0
2-* utanone BME(K	125	1p1		ug/L		105	V0 _ 1p0
2-Chlorotoluene	25.0	25.V		ug/L		10p	V0 - 1p0
2-) exanone	125	108		ug/L		86	V0 _ 1p0
4-Chlorotoluene	25.0	2p.8		ug/L		95	V0 - 1p0
4-Iso3ro3yltoluene	25.0	2V.4		ug/L		109	V0 ₋ 1p0
4-Methyl-2-3entanone BMI* (K	125	112		ug/L		89	V0 _ 1p0
Acetone	125	140		ug/L		112	V0 ₋ 1p0
* enzene	25.0	25.V		ug/L		10p	V0 ₋ 1p0
* romobenzene	25.0	25.1		ug/L		100	V0 - 1p0
* romol d rm	25.0	26.5		ug/L		106	V0 ₋ 1p0
* romomethane	25.0	18.2		ug/L		Vp	V0 ₋ 1p0
Carbon disull i de	25.0	25.4		ug/L		101	V0 - 1p0
Carbon tetrachloride	25.0	25.8		ug/L		10p	V0 ₋ 1p0
Chlorobenzene	25.0	25.6		ug/L		102	V0 - 1p0
Chlorobromomethane	25.0	25.6		ug/L		102	V0 ₋ 1p0
Chlorodibromomethane	25.0	25.8		ug/L		10p	V0 ₋ 1p0
Chloroethane	25.0	19.4		ug/L		W	V0 ₋ 1p0
Chlorol d rm	25.0	24.9		ug/L		100	V0 ₋ 1p0
Chloromethane	25.0	2p.9		ug/L		96	V0 - 1p0
cis-1,2-Dichloroethene	25.0	26.1		ug/L		104	V0 - 1p0
cis-1,p-Dichloro3ro3ene	25.0	28.2		ug/L		11p	V0 - 1p0
Dichlorobromomethane	25.0	25.V		ug/L		10p	V0 - 1p0
DichlorodilHuoromethane	25.0	22.8		ug/L		91	V0 - 1p0
Ethyl ether	25.0	2p.1		ug/L		92	V0 - 1p0 V0 - 1p0
Ethylbenzene	25.0	25.6				102	V0 - 1p0 V0 - 1p0
•	25.0	25.6		ug/L		102	•
Ethylene Dibromide				ug/L			V0 - 1p0
) exachlorobutadiene	25.0	26.5		ug/L		106	V0 _ 1p0
Iso3ro3yl ether	25.0	22.9		ug/L		92	V0 _ 1p0
Iso3ro3ylbenzene	25.0	2V.8		ug/L		111	V0 - 1p0
Methyl tert-butyl ether	25.0	2p.1		ug/L		92	V0 _ 1p0
Methylene Chloride	25.0	25.5		ug/L		102	V0 ₋ 1p0
m-f ylene X 3-f ylene	25.0	25.6		ug/L		102	V0 ₋ 1p0
Na3hthalene	25.0	2V.p		ug/L		109	V0 - 1p0
n-* utylbenzene	25.0	28.V		ug/L		115	V0 - 1p0
N-Pro3ylbenzene	25.0	26.2		ug/L		105	V0 ₋ 1p0
o-f ylene	25.0	26.0		ug/L		104	V0 ₋ 1p0
sec-* utylbenzene	25.0	26.p		ug/L		105	V0 ₋ 1p0
Styrene	25.0	26.2		ug/L		105	V0 ₋ 1p0
Tert-amyl methyl ether	25.0	28.9		ug/L		116	V0 - 1p0
Tert-butyl ethyl ether	25.0	24.9		ug/L		100	V0 ₋ 1p0
tert-* utylbenzene	25.0	26.2		ug/L		105	V0 ₋ 1p0

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-200987/4

Matrix: Water
Analysis Batch: 200987

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec. Analyte Added Result Qualifier Limits Unit %Rec Tetrachloroethene 25.0 98 24.6 ug/L V0 - 1p0 Tetrahydroluran 50.0 6p.2 ug/L 126 V0 - 1p0 Toluene 25.0 26.4 ug/L 106 V0 ₋ 1p0 trans-1,2-Dichloroethene 25.0 2p.V ug/L 95 V0 - 1p0 trans-1,p-Dichloro3ro3ene 25.0 28.0 112 V0 - 1p0 ug/L Trichloroethene 25.0 2V.0 108 V0 - 1p0 ug/L TrichloroHuoromethane 25.0 24.0 ug/L 96 V0 - 1p0 8V &inyl chloride 25.0 21.9 ug/L V0 - 1p0

26.4

ug/L

25.0

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	120		72 - 102
1:4-, Dcloroelct ne-d5 (Surr)	37		72 - 102
5-aroBorhuorof enbene (Surr)	30		72 - 102

Client Sample ID: Lab Control Sample Dup

V0 - 1p0

105

Prep Type: Total/NA

15

Matrix: Water

Lab Sample ID: LCSD 480-200987/5

Analysis Batch: 200987

Dibromomethane

Analysis Batch: 200987	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added		Qualifier Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	25.0	2p.9	ug/L	— <u> </u>	96	V0 ₋ 1p0	5	20
1,1,1-Trichloroethane	25.0	24.2	ug/L		9V	V0 ₋ 1p0	6	20
1,1,2,2-Tetrachloroethane	25.0	24.2	ug/L		9V	V0 - 1p0	6	20
1,1,2-Trichloroethane	25.0	25.8	ug/L		10p	V0 ₋ 1p0	10	20
1,1-Dichloroethane	25.0	21.4	ug/L		85	V0 ₋ 1p0	12	20
1,1-Dichloroethene	25.0	22.V	ug/L		91	V0 - 1p0	14	20
1,1-Dichloro3ro3ene	25.0	2p.8	ug/L		95	V0 ₋ 1p0	8	20
1,2,p-Trichlorobenzene	25.0	28.0	ug/L		112	V0 - 1p0	4	20
1,2,p-Trichloro3ro3ane	25.0	24.2	ug/L		9V	V0 ₋ 1p0	5	20
1,2,4-Trichlorobenzene	25.0	25.p	ug/L		101	V0 ₋ 1p0	1p	20
1,2,4-Trimethylbenzene	25.0	24.6	ug/L		98	V0 ₋ 1p0	6	20
1,2-Dibromo-p-Chloro3ro3ane	25.0	26.2	ug/L		105	V0 ₋ 1p0	11	20
1,2-Dichlorobenzene	25.0	25.4	ug/L		102	V0 - 1p0	10	20
1,2-Dichloroethane	25.0	2p.5	ug/L		94	V0 ₋ 1p0	5	20
1,2-Dichloro3ro3ane	25.0	25.0	ug/L		100	V0 ₋ 1p0	4	20
1,p,5-Trimethylbenzene	25.0	24.8	ug/L		99	V0 - 1p0	V	20
1,p-Dichlorobenzene	25.0	25.p	ug/L		101	V0 ₋ 1p0	р	20
1,p-Dichloro3ro3ane	25.0	2p.5	ug/L		94	V0 - 1p0	р	20
1,4-Dichlorobenzene	25.0	25.9	ug/L		104	V0 - 1p0	2	20
1,4-Dioxane	500	V62	7 ug/L		152	V0 ₋ 1p0	5	20
2,2-Dichloro3ro3ane	25.0	24.9	ug/L		100	V0 ₋ 1p0	2	20
2-* utanone BME(K	125	1p1	ug/L		105	V0 ₋ 1p0	0	20
2-Chlorotoluene	25.0	24.8	ug/L		99	V0 - 1p0	4	20
2-) exanone	125	116	ug/L		9p	V0 ₋ 1p0	V	20
4-Chlorotoluene	25.0	22.1	ug/L		89	V0 ₋ 1p0	V	20
4-Iso3ro3yltoluene	25.0	25.9	ug/L		104	V0 ₋ 1p0	5	20
4-Methyl-2-3entanone BMI* (K	125	10p	ug/L		8p	V0 ₋ 1p0	8	20
Acetone	125	12V	ug/L		101	V0 - 1p0	10	20

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-200987/5

Matrix: Water

Analysis Batch: 200987

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
* enzene	25.0	24.5		ug/L		98	V0 ₋ 1p0	5	20
* romobenzene	25.0	2p.9		ug/L		96	V0 ₋ 1p0	5	20
* romol d rm	25.0	24.6		ug/L		98	V0 - 1p0	8	20
* romomethane	25.0	19.8		ug/L		V9	V0 - 1p0	9	20
Carbon disull i de	25.0	21.8		ug/L		8V	V0 ₋ 1p0	15	20
Carbon tetrachloride	25.0	2p.V		ug/L		95	V0 - 1p0	9	20
Chlorobenzene	25.0	24.5		ug/L		98	V0 ₋ 1p0	4	20
Chlorobromomethane	25.0	25.0		ug/L		100	V0 ₋ 1p0	2	20
Chlorodibromomethane	25.0	26.6		ug/L		106	V0 - 1p0	р	20
Chloroethane	25.0	1V.8		ug/L		V1	V0 ₋ 1p0	8	20
Chloroldrm	25.0	2p.6		ug/L		94	V0 ₋ 1p0	6	20
Chloromethane	25.0	2p.0		ug/L		92	V0 - 1p0	4	20
cis-1,2-Dichloroethene	25.0	25.0		ug/L		100	V0 ₋ 1p0	4	20
cis-1,p-Dichloro3ro3ene	25.0	28.V		ug/L		115	V0 - 1p0	2	20
Dichlorobromomethane	25.0	24.4		ug/L		9V	V0 ₋ 1p0	5	20
Dichlorodiffuoromethane	25.0	21.0		ug/L		84	V0 - 1p0	9	20
Ethyl ether	25.0	2p.p		ug/L		9р	V0 ₋ 1p0	1	20
Ethylbenzene	25.0	24.2		ug/L		9V	V0 ₋ 1p0	6	20
Ethylene Dibromide	25.0	25.9		ug/L		104	V0 - 1p0	1	20
) exachlorobutadiene	25.0	22.9		ug/L		91	V0 ₋ 1p0	15	20
Iso3ro3yl ether	25.0	21.p		ug/L		85	V0 - 1p0	V	20
Iso3ro3ylbenzene	25.0	2p.6		ug/L		94	V0 ₋ 1p0	16	20
Methyl tert-butyl ether	25.0	22.p		ug/L		89	V0 ₋ 1p0	4	20
Methylene Chloride	25.0	2p.2		ug/L		9р	V0 - 1p0	10	20
m-f ylene X 3-f ylene	25.0	24.p		ug/L		9V	V0 ₋ 1p0	5	20
Na3hthalene	25.0	2V.8		ug/L		111	V0 ₋ 1p0	2	20
n-* utylbenzene	25.0	26.0		ug/L		104	V0 ₋ 1p0	10	20
N-Pro3ylbenzene	25.0	24.1		ug/L		96	V0 ₋ 1p0	8	20
o-f ylene	25.0	22.2		ug/L		89	V0 - 1p0	16	20
sec-* utylbenzene	25.0	24.1		ug/L		9V	V0 - 1p0	9	20
Styrene	25.0	22.2		ug/L		89	V0 - 1p0	16	20
Tert-amyl methyl ether	25.0	28.V		ug/L		115	V0 ₋ 1p0	1	20
Tert-butyl ethyl ether	25.0	24.0		ug/L		96	V0 ₋ 1p0	4	20
tert-* utylbenzene	25.0	24.2		ug/L		9V	V0 ₋ 1p0	8	20
Tetrachloroethene	25.0	25.1		ug/L		101	V0 ₋ 1p0	2	20
Tetrahydrol·luran	50.0	62.2		ug/L		124	V0 - 1p0	2	20
Toluene	25.0	2p.2		ug/L		9p	V0 ₋ 1p0	1p	20
trans-1,2-Dichloroethene	25.0	22.0		ug/L		88	V0 ₋ 1p0	8	20
trans-1,p-Dichloro3ro3ene	25.0	2V.9		ug/L		112	V0 _ 1p0	0	20
Trichloroethene	25.0	24.0		ug/L		96	V0 ₋ 1p0	12	20
TrichloroHuoromethane	25.0	22.1		ug/L		88	V0 - 1p0	8	20
&inyl chloride	25.0	21.0		ug/L		84	V0 ₋ 1p0	4	20
Dibromomethane	25.0	24.6		ug/L		98	V0 ₋ 1p0	V	20

LCSD LCSD Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 72 - 102 3/

1:4-, Dcloroelct ne-d5 (Surr) 37 72 - 102 72 - 102 5-aroBorhuorof enbene (Surr) 34

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-201080/8 Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			09/05/14 2p:40	
1,1,1-Trichloroethane	ND		1.0		ug/L			09/05/14 2p:40	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			09/05/14 2p:40	
1,1,2-Trichloroethane	ND		1.0		ug/L			09/05/14 2p:40	
1,1-Dichloroethane	ND		1.0		ug/L			09/05/14 2p:40	
1,1-Dichloroethene	ND		1.0		ug/L			09/05/14 2p:40	
1,1-Dichloro3ro3ene	ND		1.0		ug/L			09/05/14 2p:40	
1,2,p-Trichlorobenzene	ND		1.0		ug/L			09/05/14 2p:40	
1,2,p-Trichloro3ro3ane	ND		1.0		ug/L			09/05/14 2p:40	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			09/05/14 2p:40	
1,2,4-Trimethylbenzene	ND		1.0		ug/L			09/05/14 2p:40	
1,2-Dibromo-p-Chloro3ro3ane	ND		5.0		ug/L			09/05/14 2p:40	
1,2-Dichlorobenzene	ND		1.0		ug/L			09/05/14 2p:40	
1,2-Dichloroethane	ND		1.0		ug/L			09/05/14 2p:40	
1,2-Dichloro3ro3ane	ND		1.0		ug/L			09/05/14 2p:40	
1,p,5-Trimethylbenzene	ND		1.0		ug/L			09/05/14 2p:40	
1,p-Dichlorobenzene	ND		1.0		ug/L			09/05/14 2p:40	
1,p-Dichloro3ro3ane	ND		1.0		ug/L			09/05/14 2p:40	
1,4-Dichlorobenzene	ND		1.0		ug/L			09/05/14 2p:40	
1,4-Dioxane	ND		50		ug/L			09/05/14 2p:40	
2,2-Dichloro3ro3ane	ND		1.0		ug/L			09/05/14 2p:40	
2-* utanone BME(K	ND		10		ug/L			09/05/14 2p:40	
2-Chlorotoluene	ND		1.0		ug/L			09/05/14 2p:40	
2-) exanone	ND		10		ug/L			09/05/14 2p:40	
4-Chlorotoluene	ND		1.0		ug/L			09/05/14 2p:40	
4-Iso3ro3yltoluene	ND		1.0		ug/L			09/05/14 2p:40	
4-Methyl-2-3entanone BMI* (K	ND		10		ug/L			09/05/14 2p:40	
Acetone	ND		50		ug/L			09/05/14 2p:40	
* enzene	ND		1.0		ug/L			09/05/14 2p:40	
* romobenzene	ND		1.0		ug/L			09/05/14 2p:40	
* romol d rm	ND		1.0		ug/L			09/05/14 2p:40	
* romomethane	ND		2.0		ug/L			09/05/14 2p:40	
Carbon disul li de	ND		10		ug/L			09/05/14 2p:40	
Carbon tetrachloride	ND		1.0		ug/L			09/05/14 2p:40	
Chlorobenzene	ND		1.0		ug/L			09/05/14 2p:40	
Chlorobromomethane	ND		1.0		ug/L			09/05/14 2p:40	
Chlorodibromomethane	ND		0.50		ug/L			09/05/14 2p:40	
Chloroethane	ND		2.0		ug/L ug/L			09/05/14 2p:40	
Chlorol d rm	ND		1.0		ug/L			09/05/14 2p:40	
Chloromethane	ND ND		2.0		ug/L ug/L			09/05/14 2p:40	
cis-1,2-Dichloroethene	ND		1.0					09/05/14 2p:40	
cis-1,2-Dichloro3ro3ene	ND ND		0.40		ug/L			09/05/14 2p:40	
					ug/L				
Dichlorobromomethane Dichlorodil₩oromethane	ND ND		0.50		ug/L			09/05/14 2p:40	
	ND		1.0		ug/L			09/05/14 2p:40	
Ethyl ether	ND		1.0		ug/L			09/05/14 2p:40	
Ethylbenzene	ND		1.0		ug/L			09/05/14 2p:40	
Ethylene Dibromide) exachlorobutadiene	ND ND		1.0		ug/L			09/05/14 2p:40	

TestAmerica * ullalo

Page 88 of 119

6

3

4

6

8

10

11

Client: ERM-Northeast Project/Site: IDS Wayland

Client Sample ID: Method Blank

Prep Type: Total/NA

Lab Sample ID: MB 480-201080/8

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water

Analysis Batch: 201080

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iso3ro3yl ether	ND		10		ug/L			09/05/14 2p:40	1
lso3ro3ylbenzene	ND		1.0		ug/L			09/05/14 2p:40	1
Methyl tert-butyl ether	ND		1.0		ug/L			09/05/14 2p:40	1
Methylene Chloride	ND		1.0		ug/L			09/05/14 2p:40	1
m-f ylene X 3-f ylene	ND		2.0		ug/L			09/05/14 2p:40	1
Na3hthalene	ND		5.0		ug/L			09/05/14 2p:40	1
n-* utylbenzene	ND		1.0		ug/L			09/05/14 2p:40	1
N-Pro3ylbenzene	ND		1.0		ug/L			09/05/14 2p:40	1
o-f ylene	ND		1.0		ug/L			09/05/14 2p:40	1
sec-* utylbenzene	ND		1.0		ug/L			09/05/14 2p:40	1
Styrene	ND		1.0		ug/L			09/05/14 2p:40	1
Tert-amyl methyl ether	ND		5.0		ug/L			09/05/14 2p:40	1
Tert-butyl ethyl ether	ND		5.0		ug/L			09/05/14 2p:40	1
tert-* utylbenzene	ND		1.0		ug/L			09/05/14 2p:40	1
Tetrachloroethene	ND		1.0		ug/L			09/05/14 2p:40	1
TetrahydroHıran	ND		10		ug/L			09/05/14 2p:40	1
Toluene	ND		1.0		ug/L			09/05/14 2p:40	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/05/14 2p:40	1
trans-1,p-Dichloro3ro3ene	ND		0.40		ug/L			09/05/14 2p:40	1
Trichloroethene	ND		1.0		ug/L			09/05/14 2p:40	1
TrichloroHuoromethane	ND		1.0		ug/L			09/05/14 2p:40	1
&inyl chloride	ND		1.0		ug/L			09/05/14 2p:40	1

MB MB

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared	l Analyzed	Dil Fac
Toluene-d8 (Surr)	30		72 - 102		2392/915 40652	1
1:4-, Dcloroelct ne-d5 (Surr)	88		72 - 102		2392/915 40652	1
5-aroBortuorof enbene (Surr)	128		72 - 102		2392/915 40652	1

1.0

ug/L

Lab Sample ID: LCS 480-201080/5

Matrix: Water

Dibromomethane

Analysis Batch: 201080

Client Sample ID:	Lab Control Sample
ı	Prep Type: Total/NA

09/05/14 2p:40

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	25.0	28.9		ug/L		115	V0 ₋ 1p0
1,1,1-Trichloroethane	25.0	25.V		ug/L		10p	V0 ₋ 1p0
1,1,2,2-Tetrachloroethane	25.0	24.9		ug/L		100	V0 ₋ 1p0
1,1,2-Trichloroethane	25.0	25.9		ug/L		104	V0 - 1p0
1,1-Dichloroethane	25.0	26.1		ug/L		104	V0 ₋ 1p0
1,1-Dichloroethene	25.0	26.0		ug/L		104	V0 ₋ 1p0
1,1-Dichloro3ro3ene	25.0	25.6		ug/L		102	V0 ₋ 1p0
1,2,p-Trichlorobenzene	25.0	2p.9		ug/L		96	V0 ₋ 1p0
1,2,p-Trichloro3ro3ane	25.0	24.1		ug/L		96	V0 - 1p0
1,2,4-Trichlorobenzene	25.0	24.2		ug/L		9V	V0 ₋ 1p0
1,2,4-Trimethylbenzene	25.0	25.1		ug/L		100	V0 ₋ 1p0
1,2-Dibromo-p-Chloro3ro3ane	25.0	25.2		ug/L		101	V0 ₋ 1p0
1,2-Dichlorobenzene	25.0	25.1		ug/L		100	V0 ₋ 1p0
1,2-Dichloroethane	25.0	24.0		ug/L		96	V0 - 1p0

TestAmerica * ullalo

Page 89 of 119

K

5

9

11

12

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-201080/5

Matrix: Water

Client Sample ID	Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloro3ro3ane	25.0	26.2		ug/L		105	V0 - 1p0	
1,p,5-Trimethylbenzene	25.0	24.V		ug/L		99	V0 ₋ 1p0	
1,p-Dichlorobenzene	25.0	25.8		ug/L		10p	V0 ₋ 1p0	
1,p-Dichloro3ro3ane	25.0	26.6		ug/L		10V	V0 - 1p0	
1,4-Dichlorobenzene	25.0	25.6		ug/L		102	V0 ₋ 1p0	
1,4-Dioxane	500	45p		ug/L		91	V0 - 1p0	
2,2-Dichloro3ro3ane	25.0	2V.V		ug/L		111	V0 ₋ 1p0	
2-* utanone BME(K	125	1p6		ug/L		109	V0 ₋ 1p0	
2-Chlorotoluene	25.0	24.9		ug/L		100	V0 - 1p0	
2-) exanone	125	1V5	7	ug/L		140	V0 ₋ 1p0	
4-Chlorotoluene	25.0	26.8		ug/L		10V	V0 - 1p0	
4-Iso3ro3yltoluene	25.0	25.1		ug/L		101	V0 ₋ 1p0	
4-Methyl-2-3entanone BMI* (K	125	126		ug/L		101	V0 ₋ 1p0	
Acetone	125	109		ug/L		8V	V0 ₋ 1p0	
* enzene	25.0	25.4		ug/L		102	V0 ₋ 1p0	
* romobenzene	25.0	25.4		ug/L		102	V0 - 1p0	
* romol d rm	25.0	p0.9		ug/L		124	V0 ₋ 1p0	
* romomethane	25.0	24.p		ug/L		9V	V0 ₋ 1p0	
Carbon disullide	25.0	26.4		ug/L		106	V0 - 1p0	
Carbon tetrachloride	25.0	2V.1		ug/L		108	V0 ₋ 1p0	
Chlorobenzene	25.0	26.9		ug/L		108	V0 - 1p0	
Chlorobromomethane	25.0	26.2		ug/L		105	V0 - 1p0	
Chlorodibromomethane	25.0	29.1		ug/L		116	V0 - 1p0	
Chloroethane	25.0	24.1		ug/L		9V	V0 - 1p0	
Chloroldrm	25.0	24.6		ug/L		98	V0 - 1p0	
Chloromethane	25.0	2p.2		ug/L		9p	V0 - 1p0	
cis-1,2-Dichloroethene	25.0	25.1		ug/L		101	V0 - 1p0	
cis-1,p-Dichloro3ro3ene	25.0	26.2		ug/L		105	V0 - 1p0	
Dichlorobromomethane	25.0	26.0		ug/L		104	V0 _ 1p0	
Dichlorodilfluoromethane	25.0	21.0		ug/L		84	V0 _ 1p0	
Ethyl ether	25.0	25.2		ug/L		101	V0 - 1p0	
Ethylbenzene	25.0	25.6		ug/L		102	V0 - 1p0	
Ethylene Dibromide	25.0	25.8		ug/L		10p	V0 - 1p0	
) exachlorobutadiene	25.0	28.p		ug/L		11p	V0 - 1p0	
Iso3ro3yl ether	25.0	2p.4		ug/L		94	V0 - 1p0	
Iso3ro3ylbenzene	25.0	2p.4		ug/L		95	V0 - 1p0	
Methyl tert-butyl ether	25.0	24.5		ug/L		98	V0 - 1p0	
Methylene Chloride	25.0	26.4		ug/L		106	V0 - 1p0	
m-f ylene X 3-f ylene	25.0	26.6		ug/L		106	V0 - 1p0	
Na3hthalene	25.0	22.2		ug/L		89	V0 - 1p0 V0 - 1p0	
n-* utylbenzene	25.0	25.0				100	V0 - 1p0	
N-Pro3ylbenzene	25.0	24.6		ug/L		99	V0 - 1p0 V0 - 1p0	
·	25.0	25.9		ug/L				
o-f ylene				ug/L		10p	V0 - 1p0	
sec-* utylbenzene	25.0	24.5		ug/L		98	V0 - 1p0	
Styrene Test amplemental ather	25.0	25.5		ug/L		102	V0 - 1p0	
Tert-amyl methyl ether	25.0	25.5		ug/L		102	V0 - 1p0	
Tert-butyl ethyl ether	25.0	24.p		ug/L		9V	V0 - 1p0	
tert-* utylbenzene	25.0	24.p		ug/L		9V	V0 ₋ 1p0	

TestAmerica * ullalo

Page 90 of 119

9/12/2014

3

5

0

ŏ

10

12

<u> 13</u>

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-201080/5

Matrix: Water

Analysis Batch: 201080

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	25.0	28.8		ug/L		115	V0 - 1p0	
Tetrahydrol t lran	50.0	50.6		ug/L		101	V0 ₋ 1p0	
Toluene	25.0	26.1		ug/L		104	V0 ₋ 1p0	
trans-1,2-Dichloroethene	25.0	26.4		ug/L		106	V0 - 1p0	
trans-1,p-Dichloro3ro3ene	25.0	26.9		ug/L		108	V0 ₋ 1p0	
Trichloroethene	25.0	26.6		ug/L		106	V0 - 1p0	
TrichloroHuoromethane	25.0	24.V		ug/L		99	V0 ₋ 1p0	
&inyl chloride	25.0	2p.4		ug/L		94	V0 ₋ 1p0	
Dibromomethane	25.0	25.0		ug/L		100	V0 - 1p0	

LCS LCS

Surrogate	%Recovery Qualifie	er Limits
Toluene-d8 (Surr)	3/	72 - 102
1:4-, Dcloroelct ne-d5 (Surr)	3z	72 - 102
5-a roB orhuorof enbene (Surr)	110	72 - 102

Lab Sample ID: LCSD 480-201080/6

Matrix: Water

Analysis Batch: 201080

Client	Sample	ID:	Lab	Contr	ol	Sar	nple	Dup
				Prep	Τv	pe:	Tota	I/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	25.0	2V.6		ug/L		110	V0 ₋ 1p0	5	20
1,1,1-Trichloroethane	25.0	24.2		ug/L		9V	V0 ₋ 1p0	6	20
1,1,2,2-Tetrachloroethane	25.0	25.p		ug/L		101	V0 - 1p0	1	20
1,1,2-Trichloroethane	25.0	25.6		ug/L		102	V0 - 1p0	1	20
1,1-Dichloroethane	25.0	25.0		ug/L		100	V0 ₋ 1p0	4	20
1,1-Dichloroethene	25.0	24.2		ug/L		9V	V0 - 1p0	V	20
1,1-Dichloro3ro3ene	25.0	24.8		ug/L		99	V0 - 1p0	р	20
1,2,p-Trichlorobenzene	25.0	25.6		ug/L		102	V0 - 1p0	V	20
1,2,p-Trichloro3ro3ane	25.0	25.p		ug/L		101	V0 ₋ 1p0	5	20
1,2,4-Trichlorobenzene	25.0	25.2		ug/L		101	V0 ₋ 1p0	4	20
1,2,4-Trimethylbenzene	25.0	24.9		ug/L		99	V0 ₋ 1p0	1	20
1,2-Dibromo-p-Chloro3ro3ane	25.0	25.9		ug/L		104	V0 ₋ 1p0	р	20
1,2-Dichlorobenzene	25.0	25.5		ug/L		102	V0 - 1p0	2	20
1,2-Dichloroethane	25.0	2p.6		ug/L		94	V0 ₋ 1p0	2	20
1,2-Dichloro3ro3ane	25.0	25.6		ug/L		102	V0 ₋ 1p0	р	20
1,p,5-Trimethylbenzene	25.0	24.5		ug/L		98	V0 - 1p0	1	20
1,p-Dichlorobenzene	25.0	25.6		ug/L		10p	V0 ₋ 1p0	1	20
1,p-Dichloro3ro3ane	25.0	26.0		ug/L		104	V0 - 1p0	2	20
1,4-Dichlorobenzene	25.0	25.V		ug/L		10p	V0 ₋ 1p0	1	20
1,4-Dioxane	500	542		ug/L		108	V0 ₋ 1p0	18	20
2,2-Dichloro3ro3ane	25.0	26.0		ug/L		104	V0 ₋ 1p0	6	20
2-* utanone BME(K	125	1p9		ug/L		111	V0 ₋ 1p0	2	20
2-Chlorotoluene	25.0	25.6		ug/L		102	V0 - 1p0	р	20
2-) exanone	125	1V5	7	ug/L		140	V0 ₋ 1p0	0	20
4-Chlorotoluene	25.0	2V.1		ug/L		108	V0 ₋ 1p0	1	20
4-Iso3ro3yltoluene	25.0	24.8		ug/L		99	V0 ₋ 1p0	1	20
4-Methyl-2-3entanone BMI* (K	125	12p		ug/L		98	V0 ₋ 1p0	2	20
Acetone	125	10V		ug/L		86	V0 - 1p0	2	20

Client: ERM-Northeast Project/Site: IDS Wayland

TestAmerica Job ID: 480-66696-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-201080/6

Matrix: Water

Analysis Batch: 201080

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analyte	Spike	Spike LCSD LCSD %Rec.						RP	
	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
* enzene	25.0	24.p		ug/L		9V	V0 ₋ 1p0	4	20
* romobenzene	25.0	26.0		ug/L		104	V0 ₋ 1p0	2	20
* romol o rm	25.0	p0.1		ug/L		120	V0 - 1p0	р	20
* romomethane	25.0	22.6		ug/L		90	V0 - 1p0	V	20
Carbon disullide	25.0	24.8		ug/L		99	V0 ₋ 1p0	6	20
Carbon tetrachloride	25.0	25.V		ug/L		10p	V0 - 1p0	5	20
Chlorobenzene	25.0	25.V		ug/L		10p	V0 ₋ 1p0	5	20
Chlorobromomethane	25.0	25.5		ug/L		102	V0 ₋ 1p0	р	20
Chlorodibromomethane	25.0	28.1		ug/L		112	V0 - 1p0	р	20
Chloroethane	25.0	22.5		ug/L		90	V0 ₋ 1p0	V	20
Chlorol o rm	25.0	2p.6		ug/L		94	V0 ₋ 1p0	4	20
Chloromethane	25.0	21.p		ug/L		85	V0 ₋ 1p0	8	20
cis-1,2-Dichloroethene	25.0	24.5		ug/L		98	V0 ₋ 1p0	2	20
cis-1,p-Dichloro3ro3ene	25.0	26.0		ug/L		104	V0 - 1p0	1	20
Dichlorobromomethane	25.0	25.5		ug/L		102	V0 - 1p0	2	20
Dichlorodil·uoromethane	25.0	19.0		ug/L		V6	V0 - 1p0	10	20
Ethyl ether	25.0	25.V		ug/L		10p	V0 ₋ 1p0	2	20
Ethylbenzene	25.0	24.4		ug/L		9V	V0 - 1p0	5	20
Ethylene Dibromide	25.0	25.5		ug/L		102	V0 - 1p0	1	20
) exachlorobutadiene	25.0	2V.4		ug/L		110	V0 ₋ 1p0	р	20
Iso3ro3yl ether	25.0	2p.0		ug/L		92	V0 - 1p0	2	20
Iso3ro3ylbenzene	25.0	2p.9		ug/L		95	V0 ₋ 1p0	0	20
Methyl tert-butyl ether	25.0	24.V		ug/L		99	V0 ₋ 1p0	1	20
Methylene Chloride	25.0	25.6		ug/L		102	V0 ₋ 1p0	р	20
m-f ylene X 3-f ylene	25.0	25.2		ug/L		101	V0 ₋ 1p0	5	20
Na3hthalene	25.0	24.0		ug/L		96	V0 ₋ 1p0	8	20
n-* utylbenzene	25.0	24.6		ug/L		99	V0 ₋ 1p0	1	20
N-Pro3ylbenzene	25.0	24.1		ug/L		96	V0 ₋ 1p0	2	20
o-f ylene	25.0	25.0		ug/L		100	V0 - 1p0	р	20
sec-* utylbenzene	25.0	24.p		ug/L		9V	V0 - 1p0	1	20
Styrene	25.0	24.V		ug/L		99	V0 - 1p0	р	20
Tert-amyl methyl ether	25.0	25.8		ug/L		10p	V0 ₋ 1p0	1	20
Tert-butyl ethyl ether	25.0	24.4		ug/L		9V	V0 - 1p0	0	20
tert-* utylbenzene	25.0	24.p		ug/L		9V	V0 ₋ 1p0	0	20
Tetrachloroethene	25.0	2V.4		ug/L		109	V0 ₋ 1p0	5	20
TetrahydroHıran	50.0	51.9		ug/L		104	V0 - 1p0	р	20
Toluene	25.0	24.V		ug/L		99	V0 ₋ 1p0	6	20
trans-1,2-Dichloroethene	25.0	25.1		ug/L		101	V0 ₋ 1p0	5	20
trans-1,p-Dichloro3ro3ene	25.0	26.5		ug/L		106	V0 ₋ 1p0	1	20
Trichloroethene	25.0	25.2		ug/L		101	V0 ₋ 1p0	5	20
TrichloroHuoromethane	25.0	2p.0		ug/L		92	V0 - 1p0	V	20
&inyl chloride	25.0	21.V		ug/L		8V	V0 ₋ 1p0	8	20
Dibromomethane	25.0	24.5		ug/L		98	V0 ₋ 1p0	2	20

LCSD	LCSD	

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	35		72 - 102
1:4-, Dcloroelct ne-d5 (Surr)	3/		72 - 102
5-aroBorhuorof enbene (Surr)	11/		72 - 102

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

_____ Lab Sample ID: MB 480-201129/8

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	в мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			09/06/14 1p:20	
1,1,1-Trichloroethane	ND		1.0		ug/L			09/06/14 1p:20	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			09/06/14 1p:20	
1,1,2-Trichloroethane	ND		1.0		ug/L			09/06/14 1p:20	
1,1-Dichloroethane	ND		1.0		ug/L			09/06/14 1p:20	
1,1-Dichloroethene	ND		1.0		ug/L			09/06/14 1p:20	
1,1-Dichloro3ro3ene	ND		1.0		ug/L			09/06/14 1p:20	
1,2,p-Trichlorobenzene	ND		1.0		ug/L			09/06/14 1p:20	
1,2,p-Trichloro3ro3ane	ND		1.0		ug/L			09/06/14 1p:20	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			09/06/14 1p:20	
1,2,4-Trimethylbenzene	ND		1.0		ug/L			09/06/14 1p:20	
1,2-Dibromo-p-Chloro3ro3ane	ND		5.0		ug/L			09/06/14 1p:20	
1,2-Dichlorobenzene	ND		1.0		ug/L			09/06/14 1p:20	
1,2-Dichloroethane	ND		1.0		ug/L			09/06/14 1p:20	
1,2-Dichloro3ro3ane	ND		1.0		ug/L			09/06/14 1p:20	
1,p,5-Trimethylbenzene	ND		1.0		ug/L			09/06/14 1p:20	
1,p-Dichlorobenzene	ND		1.0		ug/L			09/06/14 1p:20	
1,p-Dichloro3ro3ane	ND		1.0		ug/L			09/06/14 1p:20	
1,4-Dichlorobenzene	ND		1.0		ug/L			09/06/14 1p:20	
1,4-Dioxane	ND		50		ug/L			09/06/14 1p:20	
2,2-Dichloro3ro3ane	ND		1.0		ug/L			09/06/14 1p:20	
2-* utanone BME(K	ND		10		ug/L			09/06/14 1p:20	
2-Chlorotoluene	ND		1.0		ug/L			09/06/14 1p:20	
2-) exanone	ND		10		ug/L			09/06/14 1p:20	
4-Chlorotoluene	ND		1.0		ug/L			09/06/14 1p:20	
4-Iso3ro3yltoluene	ND		1.0		ug/L			09/06/14 1p:20	
4-Methyl-2-3entanone BMI* (K	ND		10		ug/L			09/06/14 1p:20	
Acetone	ND		50		ug/L			09/06/14 1p:20	
* enzene	ND		1.0		ug/L			09/06/14 1p:20	
* romobenzene	ND		1.0		ug/L			09/06/14 1p:20	
* romol d rm	ND		1.0		ug/L ug/L			09/06/14 1p:20	
* romomethane	ND		2.0		ug/L			09/06/14 1p:20	
Carbon disull i de	ND		10		ug/L ug/L			09/06/14 1p:20	
Carbon tetrachloride	ND		1.0		ug/L			09/06/14 1p:20	
Chlorobenzene	ND		1.0		ug/L			09/06/14 1p:20	
Chlorobromomethane	ND		1.0		ug/L ug/L			09/06/14 1p:20	
Chlorodibromomethane								09/06/14 1p:20	
Chloroethane	ND ND		0.50 2.0		ug/L			09/06/14 1p:20	
Chlorolorm	ND ND		1.0		ug/L			·	
Chloromethane					ug/L			09/06/14 1p:20	
	ND		2.0		ug/L			09/06/14 1p:20	
cis-1,2-Dichloroethene	ND		1.0		ug/L			09/06/14 1p:20	
cis-1,p-Dichloro3ro3ene	ND		0.40		ug/L			09/06/14 1p:20	
Dichlorobromomethane Dichlorodilly promothens	ND		0.50		ug/L			09/06/14 1p:20	
Dichlorodilfluoromethane	ND		1.0		ug/L			09/06/14 1p:20	
Ethyl ether	ND		1.0		ug/L			09/06/14 1p:20	
Ethylbenzene	ND		1.0		ug/L			09/06/14 1p:20	
Ethylene Dibromide	ND		1.0		ug/L			09/06/14 1p:20	

TestAmerica * ullalo

Page 93 of 119

3

4

6

8

10

11

13

14

Client: ERM-Northeast Project/Site: IDS Wayland

Client Sample ID: Method Blank

Lab Sample ID: MB 480-201129/8

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water

Analysis Batch: 201129

					Onone of	Prep T	Total/NA	
	MB	MB						_
_			 	_				

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iso3ro3yl ether	ND		10		ug/L			09/06/14 1p:20	1
lso3ro3ylbenzene	ND		1.0		ug/L			09/06/14 1p:20	1
Methyl tert-butyl ether	ND		1.0		ug/L			09/06/14 1p:20	1
Methylene Chloride	ND		1.0		ug/L			09/06/14 1p:20	1
m-f ylene X 3-f ylene	ND		2.0		ug/L			09/06/14 1p:20	1
Na3hthalene	ND		5.0		ug/L			09/06/14 1p:20	1
n-* utylbenzene	ND		1.0		ug/L			09/06/14 1p:20	1
N-Pro3ylbenzene	ND		1.0		ug/L			09/06/14 1p:20	1
o-f ylene	ND		1.0		ug/L			09/06/14 1p:20	1
sec-* utylbenzene	ND		1.0		ug/L			09/06/14 1p:20	1
Styrene	ND		1.0		ug/L			09/06/14 1p:20	1
Tert-amyl methyl ether	ND		5.0		ug/L			09/06/14 1p:20	1
Tert-butyl ethyl ether	ND		5.0		ug/L			09/06/14 1p:20	1
tert-* utylbenzene	ND		1.0		ug/L			09/06/14 1p:20	1
Tetrachloroethene	ND		1.0		ug/L			09/06/14 1p:20	1
Tetrahydroltiran	ND		10		ug/L			09/06/14 1p:20	1
Toluene	ND		1.0		ug/L			09/06/14 1p:20	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/06/14 1p:20	1
trans-1,p-Dichloro3ro3ene	ND		0.40		ug/L			09/06/14 1p:20	1
Trichloroethene	ND		1.0		ug/L			09/06/14 1p:20	1
TrichloroHuoromethane	ND		1.0		ug/L			09/06/14 1p:20	1
&inyl chloride	ND		1.0		ug/L			09/06/14 1p:20	1
Dibromomethane	ND		1.0		ug/L			09/06/14 1p:20	1

MB	MB

	IVIB	IVIB				
Surrogate	%Recovery	Qualifier	Limits	Prepare	d Analyzed	Dil Fac
Toluene-d8 (Surr)	30		72 - 102		2392z915 10642	1
1:4-, Dcloroelct ne-d5 (Surr)	87		72 - 102		2392z915 10642	1
5-aroBortuorof enbene (Surr)	111		72 - 102		2392z915 10642	1

Lab Sample ID: LCS 480-201129/5

Matrix: Water

Analysis Batch: 201129

Client Sample ID: La	b Control Sample
Pre	ep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	25.0	28.5		ug/L		114	V0 - 1p0
1,1,1-Trichloroethane	25.0	25.2		ug/L		101	V0 ₋ 1p0
1,1,2,2-Tetrachloroethane	25.0	25.1		ug/L		100	V0 ₋ 1p0
1,1,2-Trichloroethane	25.0	25.0		ug/L		100	V0 - 1p0
1,1-Dichloroethane	25.0	25.9		ug/L		104	V0 ₋ 1p0
1,1-Dichloroethene	25.0	25.V		ug/L		10p	V0 ₋ 1p0
1,1-Dichloro3ro3ene	25.0	25.4		ug/L		102	V0 ₋ 1p0
1,2,p-Trichlorobenzene	25.0	25.p		ug/L		101	V0 ₋ 1p0
1,2,p-Trichloro3ro3ane	25.0	24.8		ug/L		99	V0 - 1p0
1,2,4-Trichlorobenzene	25.0	25.4		ug/L		102	V0 ₋ 1p0
1,2,4-Trimethylbenzene	25.0	25.8		ug/L		10p	V0 ₋ 1p0
1,2-Dibromo-p-Chloro3ro3ane	25.0	25.V		ug/L		10p	V0 ₋ 1p0
1,2-Dichlorobenzene	25.0	25.8		ug/L		10p	V0 ₋ 1p0
1,2-Dichloroethane	25.0	2p.6		ug/L		94	V0 - 1p0

TestAmerica * ullalo

Page 94 of 119

_5

R

9

11

13

14

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-201129/5

Matrix: Water

Client Sample ID:	Lab	Contro	I Sample
	Prep	Type:	Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichloro3ro3ane	25.0	26.1		ug/L		104	V0 - 1p0
1,p,5-Trimethylbenzene	25.0	25.2		ug/L		101	V0 ₋ 1p0
1,p-Dichlorobenzene	25.0	26.1		ug/L		104	V0 ₋ 1p0
1,p-Dichloro3ro3ane	25.0	26.1		ug/L		104	V0 - 1p0
1,4-Dichlorobenzene	25.0	26.0		ug/L		104	V0 ₋ 1p0
1,4-Dioxane	500	4p5		ug/L		8V	V0 - 1p0
2,2-Dichloro3ro3ane	25.0	2V.0		ug/L		108	V0 ₋ 1p0
2-* utanone BME(K	125	20V	7	ug/L		166	V0 ₋ 1p0
2-Chlorotoluene	25.0	26.0		ug/L		104	V0 - 1p0
2-) exanone	125	1V2	7	ug/L		1p8	V0 ₋ 1p0
4-Chlorotoluene	25.0	2V.5		ug/L		110	V0 - 1p0
4-Iso3ro3yltoluene	25.0	25.6		ug/L		102	V0 ₋ 1p0
4-Methyl-2-3entanone BMI* (K	125	12p		ug/L		99	V0 ₋ 1p0
Acetone	125	115		ug/L		92	V0 _ 1p0
* enzene	25.0	25.p		ug/L		101	V0 _ 1p0
* romobenzene	25.0	26.1		ug/L		104	V0 - 1p0
* romoldrm	25.0	p0.0		ug/L		120	V0 - 1p0
* romomethane	25.0	2p.6		ug/L		94	V0 _ 1p0
Carbon disull i de	25.0	26.0		ug/L		104	V0 - 1p0
Carbon tetrachloride	25.0	26.4		ug/L		105	V0 - 1p0
Chlorobenzene	25.0	26.5		ug/L		106	V0 - 1p0
Chlorobromomethane	25.0	26.0		ug/L		104	V0 - 1p0 V0 - 1p0
Chlorodibromomethane	25.0	28.V		ug/L		115	V0 - 1p0
Chloroethane	25.0	24.0		ug/L		96	V0 - 1p0
Chlorol o rm	25.0	24.5		ug/L		98	V0 - 1p0 V0 - 1p0
Chloromethane	25.0	21.8				8V	'
cis-1,2-Dichloroethene	25.0	25.4		ug/L ug/L		102	V0 - 1p0 V0 - 1p0
cis-1,p-Dichloro3ro3ene	25.0	26.1		_		102	V0 - 1p0 V0 - 1p0
Dichlorobromomethane	25.0	25.4		ug/L		103	
Dichlorodilfluoromethane	25.0 25.0	18.1		ug/L			V0 - 1p0
				ug/L		Vp	V0 - 1p0
Ethyl ether	25.0	26.1		ug/L		104	V0 - 1p0
Ethylpenzene	25.0	25.2		ug/L		101	V0 - 1p0
Ethylene Dibromide	25.0	26.0		ug/L		104	V0 - 1p0
) exachlorobutadiene	25.0	28.0		ug/L		112	V0 - 1p0
Iso3ro3yl ether	25.0	22.4		ug/L		89	V0 - 1p0
Iso3ro3ylbenzene	25.0	24.4		ug/L		9V	V0 - 1p0
Methyl tert-butyl ether	25.0	25.p		ug/L		101	V0 - 1p0
Methylene Chloride	25.0	26.0		ug/L		104	V0 - 1p0
m-f ylene X 3-f ylene	25.0	26.6		ug/L		106	V0 - 1p0
Na3hthalene	25.0	2p.p		ug/L		9p	V0 _ 1p0
n-* utylbenzene	25.0	25.p		ug/L		101	V0 - 1p0
N-Pro3ylbenzene	25.0	25.0		ug/L		100	V0 _ 1p0
o-f ylene	25.0	26.1		ug/L		104	V0 _ 1p0
sec-* utylbenzene	25.0	25.0		ug/L		100	V0 ₋ 1p0
Styrene	25.0	25.4		ug/L		101	V0 ₋ 1p0
Tert-amyl methyl ether	25.0	24.8		ug/L		99	V0 - 1p0
Tert-butyl ethyl ether	25.0	2p.5		ug/L		94	V0 ₋ 1p0
tert-* utylbenzene	25.0	24.6		ug/L		99	V0 ₋ 1p0

TestAmerica * ullalo

Page 95 of 119

3

5

7

O

10

12

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-201129/5

Matrix: Water

Analysis Batch: 201129

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	25.0	2V.5		ug/L		110	V0 - 1p0	
Tetrahydrolulran	50.0	50.V		ug/L		101	V0 ₋ 1p0	
Toluene	25.0	25.8		ug/L		10p	V0 ₋ 1p0	
trans-1,2-Dichloroethene	25.0	25.V		ug/L		10p	V0 - 1p0	
trans-1,p-Dichloro3ro3ene	25.0	26.8		ug/L		10V	V0 ₋ 1p0	
Trichloroethene	25.0	26.1		ug/L		104	V0 - 1p0	
TrichloroHuoromethane	25.0	2p.8		ug/L		95	V0 ₋ 1p0	
&inyl chloride	25.0	22.p		ug/L		89	V0 ₋ 1p0	
Dibromomethane	25.0	24.6		ug/L		98	V0 - 1p0	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	35		72 - 102
1:4-, Dcloroehct ne-d5 (Surr)	84		72 - 102
5-aroBorhuorof enbene (Surr)	115		72 - 102

Lab Sample ID: LCSD 480-201129/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 201129									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	25.0	28.4		ug/L		114	V0 ₋ 1p0	0	20
1,1,1-Trichloroethane	25.0	24.6		ug/L		99	V0 ₋ 1p0	2	20
1,1,2,2-Tetrachloroethane	25.0	25.2		ug/L		101	V0 - 1p0	0	20
1,1,2-Trichloroethane	25.0	25.4		ug/L		101	V0 ₋ 1p0	1	20
1,1-Dichloroethane	25.0	25.1		ug/L		100	V0 ₋ 1p0	р	20
1,1-Dichloroethene	25.0	24.5		ug/L		98	V0 - 1p0	5	20
1,1-Dichloro3ro3ene	25.0	24.8		ug/L		99	V0 ₋ 1p0	2	20
1,2,p-Trichlorobenzene	25.0	25.8		ug/L		10p	V0 - 1p0	2	20
1,2,p-Trichloro3ro3ane	25.0	24.p		ug/L		9V	V0 ₋ 1p0	2	20
1,2,4-Trichlorobenzene	25.0	26.0		ug/L		104	V0 ₋ 1p0	2	20
1,2,4-Trimethylbenzene	25.0	24.9		ug/L		100	V0 ₋ 1p0	р	20
1,2-Dibromo-p-Chloro3ro3ane	25.0	26.p		ug/L		105	V0 ₋ 1p0	р	20
1,2-Dichlorobenzene	25.0	25.p		ug/L		101	V0 - 1p0	2	20
1,2-Dichloroethane	25.0	2p.1		ug/L		92	V0 ₋ 1p0	2	20
1,2-Dichloro3ro3ane	25.0	25.8		ug/L		10p	V0 ₋ 1p0	1	20
1,p,5-Trimethylbenzene	25.0	24.V		ug/L		99	V0 - 1p0	2	20
1,p-Dichlorobenzene	25.0	25.V		ug/L		10p	V0 ₋ 1p0	1	20
1,p-Dichloro3ro3ane	25.0	26.p		ug/L		105	V0 - 1p0	1	20
1,4-Dichlorobenzene	25.0	25.8		ug/L		10p	V0 ₋ 1p0	0	20
1,4-Dioxane	500	5p9	7	ug/L		108	V0 ₋ 1p0	21	20
2,2-Dichloro3ro3ane	25.0	26.2		ug/L		105	V0 ₋ 1p0	р	20
2-* utanone BME(K	125	211	7	ug/L		168	V0 ₋ 1p0	2	20
2-Chlorotoluene	25.0	25.8		ug/L		10p	V0 - 1p0	1	20
2-) exanone	125	1W	7	ug/L		141	V0 ₋ 1p0	р	20
4-Chlorotoluene	25.0	2V.1		ug/L		108	V0 ₋ 1p0	1	20
4-Iso3ro3yltoluene	25.0	25.2		ug/L		101	V0 ₋ 1p0	1	20
4-Methyl-2-3entanone BMI* (K	125	126		ug/L		101	V0 ₋ 1p0	2	20
Acetone	125	118		ug/L		94	V0 - 1p0	2	20

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-201129/6

Matrix: Water

Analysis Batch: 201129

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike LCS		LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
* enzene	25.0	24.4		ug/L		9V	V0 ₋ 1p0	4	20
* romobenzene	25.0	25.6		ug/L		102	V0 ₋ 1p0	2	20
* romol o rm	25.0	p0.5		ug/L		122	V0 - 1p0	2	20
* romomethane	25.0	22.9		ug/L		91	V0 - 1p0	р	20
Carbon disullide	25.0	25.1		ug/L		100	V0 ₋ 1p0	р	20
Carbon tetrachloride	25.0	25.5		ug/L		102	V0 - 1p0	р	20
Chlorobenzene	25.0	26.2		ug/L		105	V0 ₋ 1p0	1	20
Chlorobromomethane	25.0	25.0		ug/L		100	V0 ₋ 1p0	4	20
Chlorodibromomethane	25.0	28.9		ug/L		115	V0 - 1p0	1	20
Chloroethane	25.0	22.6		ug/L		90	V0 ₋ 1p0	6	20
Chlorolorm	25.0	2p.4		ug/L		94	V0 ₋ 1p0	5	20
Chloromethane	25.0	20.8		ug/L		8p	V0 _ 1p0	5	20
cis-1,2-Dichloroethene	25.0	24.p		ug/L		9V	V0 ₋ 1p0	4	20
cis-1,p-Dichloro3ro3ene	25.0	25.5		ug/L		102	V0 - 1p0	2	20
Dichlorobromomethane	25.0	25.0		ug/L		100	V0 ₋ 1p0	2	20
Dichlorodilfluoromethane	25.0	16.8	7	ug/L		6V	V0 - 1p0	8	20
Ethyl ether	25.0	25.6		ug/L		102	V0 ₋ 1p0	2	20
Ethylbenzene	25.0	25.1		ug/L		100	V0 - 1p0	1	20
Ethylene Dibromide	25.0	26.0		ug/L		104	V0 - 1p0	0	20
) exachlorobutadiene	25.0	28.0		ug/L		112	V0 ₋ 1p0	0	20
Iso3ro3yl ether	25.0	22.0		ug/L		88	V0 - 1p0	2	20
Iso3ro3ylbenzene	25.0	24.2		ug/L		9V	V0 ₋ 1p0	1	20
Methyl tert-butyl ether	25.0	25.0		ug/L		100	V0 ₋ 1p0	1	20
Methylene Chloride	25.0	25.p		ug/L		101	V0 ₋ 1p0	р	20
m-f ylene X 3-f ylene	25.0	25.9		ug/L		104	V0 ₋ 1p0	2	20
Na3hthalene	25.0	24.p		ug/L		9V	V0 ₋ 1p0	4	20
n-* utylbenzene	25.0	24.p		ug/L		9V	V0 ₋ 1p0	4	20
N-Pro3ylbenzene	25.0	24.2		ug/L		9V	V0 ₋ 1p0	р	20
o-f ylene	25.0	25.V		ug/L		10p	V0 - 1p0	1	20
sec-* utylbenzene	25.0	24.p		ug/L		9V	V0 ₋ 1p0	р	20
Styrene	25.0	25.2		ug/L		101	V0 - 1p0	1	20
Tert-amyl methyl ether	25.0	24.V		ug/L		99	V0 ₋ 1p0	0	20
Tert-butyl ethyl ether	25.0	2p.p		ug/L		9p	V0 - 1p0	1	20
tert-* utylbenzene	25.0	24.9		ug/L		100	V0 ₋ 1p0	1	20
Tetrachloroethene	25.0	2V.4		ug/L		109	V0 ₋ 1p0	0	20
TetrahydroHıran	50.0	52.0		ug/L		104	V0 - 1p0	2	20
Toluene	25.0	25.V		ug/L		10p	V0 ₋ 1p0	1	20
trans-1,2-Dichloroethene	25.0	25.1		ug/L		100	V0 ₋ 1p0	р	20
trans-1,p-Dichloro3ro3ene	25.0	26.6		ug/L		10V	V0 ₋ 1p0	1	20
Trichloroethene	25.0	25.5		ug/L		102	V0 ₋ 1p0	2	20
Trichloroffluoromethane	25.0	22.5		ug/L		90	V0 - 1p0	6	20
&inyl chloride	25.0	21.2		ug/L		85	V0 ₋ 1p0	5	20
Dibromomethane	25.0	24.4		ug/L		9V	V0 ₋ 1p0	1	20

LCSD LCSD Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 72 - 102 3/

1:4-, Dcloroelct ne-d5 (Surr) 30 72 - 102 72 - 102 5-aroBorhuorof enbene (Surr) 115

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-201180/8

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			09/0V/14 2p:49	
1,1,1-Trichloroethane	ND		1.0		ug/L			09/0V/14 2p:49	,
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			09/0V/14 2p:49	
1,1,2-Trichloroethane	ND		1.0		ug/L			09/0V/14 2p:49	
1,1-Dichloroethane	ND		1.0		ug/L			09/0V/14 2p:49	
1,1-Dichloroethene	ND		1.0		ug/L			09/0V/14 2p:49	
1,1-Dichloro3ro3ene	ND		1.0		ug/L			09/0V/14 2p:49	
1,2,p-Trichlorobenzene	ND		1.0		ug/L			09/0V/14 2p:49	
1,2,p-Trichloro3ro3ane	ND		1.0		ug/L			09/0V/14 2p:49	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			09/0V/14 2p:49	
1,2,4-Trimethylbenzene	ND		1.0		ug/L			09/0V/14 2p:49	
1,2-Dibromo-p-Chloro3ro3ane	ND		5.0		ug/L			09/0V/14 2p:49	,
1,2-Dichlorobenzene	ND		1.0		ug/L			09/0V/14 2p:49	
1,2-Dichloroethane	ND		1.0		ug/L			09/0V/14 2p:49	
1,2-Dichloro3ro3ane	ND		1.0		ug/L			09/0V/14 2p:49	
1,p,5-Trimethylbenzene	ND		1.0		ug/L			09/0V/14 2p:49	
1,p-Dichlorobenzene	ND		1.0		ug/L			09/0V/14 2p:49	
1,p-Dichloro3ro3ane	ND		1.0		ug/L			09/0V/14 2p:49	
1,4-Dichlorobenzene	ND		1.0		ug/L			09/0V/14 2p:49	,
1,4-Dioxane	ND		50		ug/L			09/0V/14 2p:49	
2,2-Dichloro3ro3ane	ND		1.0		ug/L			09/0V/14 2p:49	
2-* utanone BME(K	ND		10		ug/L			09/0V/14 2p:49	,
2-Chlorotoluene	ND		1.0		ug/L			09/0V/14 2p:49	
2-) exanone	ND		10		ug/L			09/0V/14 2p:49	
4-Chlorotoluene	ND		1.0		ug/L			09/0V/14 2p:49	,
4-Iso3ro3yltoluene	ND		1.0		ug/L			09/0V/14 2p:49	
4-Methyl-2-3entanone BMI* (K	ND		10		ug/L			09/0V/14 2p:49	
Acetone	ND		50		ug/L			09/0V/14 2p:49	,
* enzene	ND		1.0		ug/L			09/0V/14 2p:49	
* romobenzene	ND		1.0		ug/L			09/0V/14 2p:49	
* romol d rm	ND		1.0		ug/L			09/0V/14 2p:49	
* romomethane	ND		2.0		ug/L			09/0V/14 2p:49	,
Carbon disullide	ND		10		ug/L			09/0V/14 2p:49	
Carbon tetrachloride	ND		1.0		ug/L			09/0V/14 2p:49	
Chlorobenzene	ND		1.0		ug/L			09/0V/14 2p:49	
Chlorobromomethane	ND		1.0		ug/L			09/0V/14 2p:49	
Chlorodibromomethane	ND		0.50		ug/L			09/0V/14 2p:49	,
Chloroethane	ND		2.0		ug/L			09/0V/14 2p:49	,
Chlorolorm	ND		1.0		ug/L			09/0V/14 2p:49	
Chloromethane	ND ND		2.0		ug/L ug/L			09/0V/14 2p:49	,
cis-1,2-Dichloroethene	ND		1.0		ug/L			09/0V/14 2p:49	,
cis-1,2-Dichloro3ro3ene	ND		0.40		ug/L ug/L			09/0V/14 2p:49	,
Dichlorobromomethane	ND		0.40					09/0V/14 2p:49	,
Dichlorodilluoromethane	ND ND		1.0		ug/L ug/L			09/0V/14 2p:49 09/0V/14 2p:49	,
	ND ND		1.0					09/0V/14 2p:49 09/0V/14 2p:49	
Ethylbenzene					ug/L				
Ethylpen Dibromide	ND ND		1.0		ug/L			09/0V/14 2p:49	,
Ethylene Dibromide) exachlorobutadiene	ND ND		1.0 0.40		ug/L ug/L			09/0V/14 2p:49 09/0V/14 2p:49	

TestAmerica * ullalo

Page 98 of 119

9

3

8

9

11

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 480-201180/8

Matrix: Water

Analysis Batch: 201180

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iso3ro3yl ether	ND		10		ug/L			09/0V/14 2p:49	1
Iso3ro3ylbenzene	ND		1.0		ug/L			09/0V/14 2p:49	1
Methyl tert-butyl ether	ND		1.0		ug/L			09/0V/14 2p:49	1
Methylene Chloride	ND		1.0		ug/L			09/0V/14 2p:49	1
m-f ylene X 3-f ylene	ND		2.0		ug/L			09/0V/14 2p:49	1
Na3hthalene	ND		5.0		ug/L			09/0V/14 2p:49	1
n-* utylbenzene	ND		1.0		ug/L			09/0V/14 2p:49	1
N-Pro3ylbenzene	ND		1.0		ug/L			09/0V/14 2p:49	1
o-f ylene	ND		1.0		ug/L			09/0V/14 2p:49	1
sec-* utylbenzene	ND		1.0		ug/L			09/0V/14 2p:49	1
Styrene	ND		1.0		ug/L			09/0V/14 2p:49	1
Tert-amyl methyl ether	ND		5.0		ug/L			09/0V/14 2p:49	1
Tert-butyl ethyl ether	ND		5.0		ug/L			09/0V/14 2p:49	1
tert-* utylbenzene	ND		1.0		ug/L			09/0V/14 2p:49	1
Tetrachloroethene	ND		1.0		ug/L			09/0V/14 2p:49	1
Tetrahydroltliran	ND		10		ug/L			09/0V/14 2p:49	1
Toluene	ND		1.0		ug/L			09/0V/14 2p:49	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/0V/14 2p:49	1
trans-1,p-Dichloro3ro3ene	ND		0.40		ug/L			09/0V/14 2p:49	1
Trichloroethene	ND		1.0		ug/L			09/0V/14 2p:49	1
TrichloroHuoromethane	ND		1.0		ug/L			09/0V/14 2p:49	1
&inyl chloride	ND		1.0		ug/L			09/0V/14 2p:49	1
Dibromomethane	ND		1.0		ug/L			09/0V/14 2p:49	1

MB I	MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	34		72 - 102		23927915 40653	1
1:4-, Dcloroelct ne-d5 (Surr)	80		72 - 102		23927915 40653	1
5-aroBortuorof enbene (Surr)	111		72 - 102		23927915 40653	1

Lab Sample ID: LCS 480-201180/5

Matrix: Water

Analysis Batch: 201180

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	25.0	28.V		ug/L		115	V0 ₋ 1p0
1,1,1-Trichloroethane	25.0	25.5		ug/L		102	V0 ₋ 1p0
1,1,2,2-Tetrachloroethane	25.0	24.5		ug/L		98	V0 ₋ 1p0
1,1,2-Trichloroethane	25.0	25.2		ug/L		101	V0 - 1p0
1,1-Dichloroethane	25.0	25.V		ug/L		10p	V0 ₋ 1p0
1,1-Dichloroethene	25.0	25.6		ug/L		102	V0 ₋ 1p0
1,1-Dichloro3ro3ene	25.0	25.8		ug/L		10p	V0 ₋ 1p0
1,2,p-Trichlorobenzene	25.0	24.2		ug/L		9V	V0 ₋ 1p0
1,2,p-Trichloro3ro3ane	25.0	24.V		ug/L		99	V0 - 1p0
1,2,4-Trichlorobenzene	25.0	24.5		ug/L		98	V0 ₋ 1p0
1,2,4-Trimethylbenzene	25.0	25.0		ug/L		100	V0 ₋ 1p0
1,2-Dibromo-p-Chloro3ro3ane	25.0	25.2		ug/L		101	V0 ₋ 1p0
1,2-Dichlorobenzene	25.0	24.9		ug/L		100	V0 - 1p0
1,2-Dichloroethane	25.0	2p.4		ug/L		94	V0 - 1p0

TestAmerica * ullalo

Page 99 of 119

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-201180/5

Matrix: Water

Client Sample ID:	Lab	Contr	ol Sample
	Prep	Туре	: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichloro3ro3ane	25.0	26.p		ug/L		105	V0 - 1p0
1,p,5-Trimethylbenzene	25.0	24.8		ug/L		99	V0 ₋ 1p0
1,p-Dichlorobenzene	25.0	25.V		ug/L		10p	V0 ₋ 1p0
1,p-Dichloro3ro3ane	25.0	26.2		ug/L		105	V0 - 1p0
1,4-Dichlorobenzene	25.0	25.6		ug/L		102	V0 ₋ 1p0
1,4-Dioxane	500	516		ug/L		10p	V0 - 1p0
2,2-Dichloro3ro3ane	25.0	2V.2		ug/L		109	V0 ₋ 1p0
2-* utanone BME(K	125	1p6		ug/L		109	V0 ₋ 1p0
2-Chlorotoluene	25.0	25.4		ug/L		102	V0 - 1p0
2-) exanone	125	1V2	7	ug/L		1pV	V0 ₋ 1p0
4-Chlorotoluene	25.0	26.8		ug/L		10V	V0 - 1p0
4-Iso3ro3yltoluene	25.0	25.2		ug/L		101	V0 ₋ 1p0
4-Methyl-2-3entanone BMI* (K	125	124		ug/L		99	V0 ₋ 1p0
Acetone	125	111		ug/L		89	V0 ₋ 1p0
* enzene	25.0	25.4		ug/L		102	V0 ₋ 1p0
* romobenzene	25.0	25.5		ug/L		102	V0 - 1p0
* romol d rm	25.0	p1.0		ug/L		124	V0 ₋ 1p0
* romomethane	25.0	2p.5		ug/L		94	V0 ₋ 1p0
Carbon disullide	25.0	25.p		ug/L		101	V0 - 1p0
Carbon tetrachloride	25.0	2V.0		ug/L		108	V0 ₋ 1p0
Chlorobenzene	25.0	26.V		ug/L		10V	V0 - 1p0
Chlorobromomethane	25.0	25.8		ug/L		10p	V0 ₋ 1p0
Chlorodibromomethane	25.0	29.2		ug/L		11V	V0 _ 1p0
Chloroethane	25.0	24.0		ug/L		96	V0 ₋ 1p0
Chloroldrm	25.0	24.4		ug/L		98	V0 _ 1p0
Chloromethane	25.0	22.4		ug/L		89	V0 - 1p0
cis-1,2-Dichloroethene	25.0	25.0		ug/L		100	V0 _ 1p0
cis-1,p-Dichloro3ro3ene	25.0	26.4		ug/L		106	V0 _ 1p0
Dichlorobromomethane	25.0	25.V		ug/L		10p	V0 _ 1p0
Dichlorodiffuoromethane	25.0	19.6		ug/L		V9	V0 _ 1p0
Ethyl ether	25.0	25.4		ug/L		102	V0 - 1p0
Ethylbenzene	25.0	25.4		ug/L		101	V0 - 1p0
Ethylene Dibromide	25.0	25.8		ug/L		10p	V0 - 1p0
) exachlorobutadiene	25.0	2V.9		ug/L		112	V0 - 1p0
Iso3ro3yl ether	25.0	21.5		ug/L		86	V0 - 1p0
Iso3ro3ylbenzene	25.0	24.1		ug/L		96	V0 - 1p0
Methyl tert-butyl ether	25.0	24.6		ug/L		98	V0 - 1p0
Methylene Chloride	25.0	26.0		ug/L		104	V0 - 1p0
m-f ylene X 3-f ylene	25.0	26.8		ug/L		10V	V0 - 1p0 V0 - 1p0
Na3hthalene	25.0	22.4		ug/L		90	V0 - 1p0 V0 - 1p0
n-* utylbenzene N-Pro3ylbenzene	25.0 25.0	24.V 24.6		ug/L		99 98	V0 - 1p0 V0 - 1p0
·	25.0	25.8		ug/L			
o-f ylene				ug/L		10p	V0 - 1p0
sec-* utylbenzene	25.0	24.6		ug/L		99	V0 - 1p0
Styrene Text are the death of the co	25.0	25.5		ug/L		102	V0 _ 1p0
Tert-amyl methyl ether	25.0	24.V		ug/L		99	V0 - 1p0
Tert-butyl ethyl ether	25.0	22.5		ug/L		90	V0 - 1p0
tert-* utylbenzene	25.0	24.V		ug/L		99	V0 ₋ 1p0

TestAmerica * ullalo

2

Л

6

R

11

4.6

1 /

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-201180/5

Matrix: Water

Analysis Batch: 201180

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	25.0	28.V		ug/L		115	V0 ₋ 1p0	
Tetrahydrol·dran	50.0	51.2		ug/L		102	V0 ₋ 1p0	
Toluene	25.0	26.1		ug/L		104	V0 ₋ 1p0	
trans-1,2-Dichloroethene	25.0	25.9		ug/L		104	V0 - 1p0	
trans-1,p-Dichloro3ro3ene	25.0	26.9		ug/L		108	V0 ₋ 1p0	
Trichloroethene	25.0	26.p		ug/L		105	V0 - 1p0	
TrichloroHuoromethane	25.0	24.5		ug/L		98	V0 ₋ 1p0	
&inyl chloride	25.0	22.6		ug/L		91	V0 ₋ 1p0	
Dibromomethane	25.0	24.6		ug/L		99	V0 - 1p0	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	35		72 - 102
1:4-, Dcloroelct ne-d5 (Surr)	88		72 - 102
5-aroBorhuorof enbene (Surr)	11z		72 - 102

Lab Sample ID: LCSD 480-201180/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 201180									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	25.0	2V.5		ug/L		110	V0 ₋ 1p0	5	20
1,1,1-Trichloroethane	25.0	2p.6		ug/L		94	V0 ₋ 1p0	8	20
1,1,2,2-Tetrachloroethane	25.0	24.V		ug/L		99	V0 - 1p0	1	20
1,1,2-Trichloroethane	25.0	25.0		ug/L		100	V0 ₋ 1p0	1	20
1,1-Dichloroethane	25.0	2p.9		ug/L		96	V0 ₋ 1p0	8	20
1,1-Dichloroethene	25.0	2p.p		ug/L		9p	V0 - 1p0	9	20
1,1-Dichloro3ro3ene	25.0	24.1		ug/L		96	V0 ₋ 1p0	V	20
1,2,p-Trichlorobenzene	25.0	24.9		ug/L		100	V0 - 1p0	р	20
1,2,p-Trichloro3ro3ane	25.0	24.1		ug/L		96	V0 ₋ 1p0	р	20
1,2,4-Trichlorobenzene	25.0	24.8		ug/L		99	V0 ₋ 1p0	1	20
1,2,4-Trimethylbenzene	25.0	24.0		ug/L		96	V0 ₋ 1p0	4	20
1,2-Dibromo-p-Chloro3ro3ane	25.0	25.0		ug/L		100	V0 ₋ 1p0	1	20
1,2-Dichlorobenzene	25.0	24.8		ug/L		99	V0 - 1p0	0	20
1,2-Dichloroethane	25.0	22.V		ug/L		91	V0 ₋ 1p0	р	20
1,2-Dichloro3ro3ane	25.0	24.V		ug/L		99	V0 ₋ 1p0	6	20
1,p,5-Trimethylbenzene	25.0	2p.9		ug/L		95	V0 - 1p0	4	20
1,p-Dichlorobenzene	25.0	25.1		ug/L		100	V0 ₋ 1p0	р	20
1,p-Dichloro3ro3ane	25.0	25.6		ug/L		102	V0 - 1p0	р	20
1,4-Dichlorobenzene	25.0	24.V		ug/L		99	V0 ₋ 1p0	р	20
1,4-Dioxane	500	49p		ug/L		99	V0 ₋ 1p0	4	20
2,2-Dichloro3ro3ane	25.0	25.1		ug/L		100	V0 ₋ 1p0	8	20
2-* utanone BME(K	125	202	7	ug/L		162	V0 ₋ 1p0	р9	20
2-Chlorotoluene	25.0	24.8		ug/L		99	V0 - 1p0	р	20
2-) exanone	125	1V1	7	ug/L		1pV	V0 ₋ 1p0	0	20
4-Chlorotoluene	25.0	26.p		ug/L		105	V0 ₋ 1p0	2	20
4-Iso3ro3yltoluene	25.0	24.1		ug/L		96	V0 ₋ 1p0	4	20
4-Methyl-2-3entanone BMI* (K	125	12p		ug/L		98	V0 ₋ 1p0	0	20
Acetone	125	109		ug/L		8V	V0 - 1p0	2	20

Client: ERM-Northeast Project/Site: IDS Wayland TestAmerica Job ID: 480-66696-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-201180/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 201180							Prep Type. To		
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
* enzene	25.0	2p.V		ug/L		95	V0 ₋ 1p0	V	20
* romobenzene	25.0	25.2		ug/L		101	V0 _ 1p0	1	20
* romol o rm	25.0	29.8		ug/L		119	V0 ₋ 1p0	4	20
* romomethane	25.0	22.2		ug/L		89	V0 - 1p0	6	20
Carbon disull i de	25.0	2p.5		ug/L		94	V0 ₋ 1p0	V	20
Carbon tetrachloride	25.0	24.V		ug/L		99	V0 - 1p0	9	20
Chlorobenzene	25.0	25.2		ug/L		101	V0 ₋ 1p0	6	20
Chlorobromomethane	25.0	25.4		ug/L		101	V0 ₋ 1p0	1	20
Chlorodibromomethane	25.0	28.0		ug/L		112	V0 - 1p0	4	20
Chloroethane	25.0	21.9		ug/L		88	V0 ₋ 1p0	9	20
Chlorolorm	25.0	2p.0		ug/L		92	V0 ₋ 1p0	6	20
Chloromethane	25.0	20.0		ug/L		80	V0 ₋ 1p0	11	20
cis-1,2-Dichloroethene	25.0	24.1		ug/L		9V	V0 ₋ 1p0	4	20
cis-1,p-Dichloro3ro3ene	25.0	25.1		ug/L		100	V0 - 1p0	5	20
Dichlorobromomethane	25.0	24.6		ug/L		98	V0 - 1p0	5	20
Dichlorodilfluoromethane	25.0	1V.2	7	ug/L		69	V0 - 1p0	1p	20
Ethyl ether	25.0	24.8		ug/L		99	V0 ₋ 1p0	2	20
Ethylbenzene	25.0	24.1		ug/L		96	V0 _ 1p0	5	20
Ethylene Dibromide	25.0	25.4		ug/L		102	V0 - 1p0	2	20
) exachlorobutadiene	25.0	2V.p		ug/L		109	V0 ₋ 1p0	2	20
Iso3ro3yl ether	25.0	20.V		ug/L		8p	V0 - 1p0	4	20
Iso3ro3ylbenzene	25.0	2p.2		ug/L		9p	V0 ₋ 1p0	4	20
Methyl tert-butyl ether	25.0	24.4		ug/L		9V	V0 ₋ 1p0	1	20
Methylene Chloride	25.0	24.V		ug/L		99	V0 ₋ 1p0	5	20
m-f ylene X 3-f ylene	25.0	25.0		ug/L		100	V0 ₋ 1p0	V	20
Na3hthalene	25.0	2p.9		ug/L		95	V0 ₋ 1p0	6	20
n-* utylbenzene	25.0	2p.8		ug/L		95	V0 ₋ 1p0	4	20
N-Pro3ylbenzene	25.0	2p.4		ug/L		94	V0 ₋ 1p0	5	20
o-f ylene	25.0	24.V		ug/L		99	V0 - 1p0	4	20
sec-* utylbenzene	25.0	2p.V		ug/L		95	V0 ₋ 1p0	4	20
Styrene	25.0	24.5		ug/L		98	V0 - 1p0	4	20
Tert-amyl methyl ether	25.0	24.p		ug/L		9V	V0 ₋ 1p0	2	20
Tert-butyl ethyl ether	25.0	22.0		ug/L		88	V0 ₋ 1p0	2	20
tert-* utylbenzene	25.0	2p.5		ug/L		94	V0 ₋ 1p0	5	20
Tetrachloroethene	25.0	26.4		ug/L		106	V0 ₋ 1p0	8	20
TetrahydroHuran	50.0	51.0		ug/L		102	V0 - 1p0	0	20
Toluene	25.0	24.8		ug/L		99	V0 ₋ 1p0	5	20
trans-1,2-Dichloroethene	25.0	24.p		ug/L		9V	V0 ₋ 1p0	6	20
trans-1,p-Dichloro3ro3ene	25.0	25.9		ug/L		104	V0 ₋ 1p0	4	20
Trichloroethene	25.0	24.p		ug/L		9V	V0 ₋ 1p0	8	20
TrichloroHuoromethane	25.0	22.p		ug/L		89	V0 - 1p0	9	20
&inyl chloride	25.0	20.5		ug/L		82	V0 - 1p0	10	20
Dibromomethane	25.0	24.1		ug/L		96	V0 - 1p0	2	20

	LCSD	LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	35		72 - 102
1:4-, Dcloroehct ne-d5 (Surr)	88		72 - 102
5-aroBortuorof enbene (Surr)	117		72 - 102

Client: ERM-Northeast Project/Site: IDS Wayland

4

GC/MS VOA

Analysis Batch: 200987

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-66696-1	TB-001-20140904-01	Total/NA	Water	8260C	
480-66696-2	MW-217D-20140904-01	Total/NA	Water	8260C	
480-66696-3	MW-217M-20140904-01	Total/NA	Water	8260C	
480-66696-4	MW-217S-20140904-01	Total/NA	Water	8260C	
480-66696-5	MW-1024D-20140904-01	Total/NA	Water	8260C	
LCS 480-200987/4	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-200987/5	Lab Control Sample Dup	Total/NA	Water	8260C	
MB 480-200987/7	Method Blank	Total/NA	Water	8260C	

Analysis Batch: 201080

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-66696-7	MW-1025D-20140904-01	Total/NA	Water	8260C	-
480-66696-8	MW-1019B-20140904-01	Total/NA	Water	8260C	
480-66696-9	MW-1020-20140904-01	Total/NA	Water	8260C	
480-66696-11	MW-1017D-20140904-01	Total/NA	Water	8260C	
480-66696-12	MW-1015D-20140904-01	Total/NA	Water	8260C	
480-66696-13	MW-1033-20140904-01	Total/NA	Water	8260C	
480-66696-14	MW-1027-20140904-01	Total/NA	Water	8260C	
480-66696-15	MW-1028-20140904-01	Total/NA	Water	8260C	
480-66696-16	MW-1030-20140904-01	Total/NA	Water	8260C	
LCS 480-201080/5	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-201080/6	Lab Control Sample Dup	Total/NA	Water	8260C	
MB 480-201080/8	Method Blank	Total/NA	Water	8260C	

Analysis Batch: 201129

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-66696-6	MW-1025M-20140904-01	Total/NA	Water	8260C	
480-66696-10	MW-1018-20140904-01	Total/NA	Water	8260C	
480-66696-11 - DL	MW-1017D-20140904-01	Total/NA	Water	8260C	
180-66696-17	MW-1031-20140904-01	Total/NA	Water	8260C	
180-66696-18	MW-1032-20140904-01	Total/NA	Water	8260C	
180-66696-19	MW-1022-20140904-01	Total/NA	Water	8260C	
180-66696-20	MW-1023-20140904-01	Total/NA	Water	8260C	
180-66696-21	MW-1013-20140904-01	Total/NA	Water	8260C	
180-66696-22	MW-1034-20140904-01	Total/NA	Water	8260C	
180-66696-23	DUP-004-20140904-01	Total/NA	Water	8260C	
180-66696-24	DUP-003-20140904-01	Total/NA	Water	8260C	
180-66696-25	MW-1001M-20140904-01	Total/NA	Water	8260C	
180-66696-26	MW-1001B-20140904-01	Total/NA	Water	8260C	
180-66696-27	MW-1003-20140904-01	Total/NA	Water	8260C	
180-66696-28	MW-1004-20140904-01	Total/NA	Water	8260C	
180-66696-29	MW-1005-20140904-01	Total/NA	Water	8260C	
180-66696-30	MW-1006-20140904-01	Total/NA	Water	8260C	
CS 480-201129/5	Lab Control Sample	Total/NA	Water	8260C	
CSD 480-201129/6	Lab Control Sample Dup	Total/NA	Water	8260C	
MB 480-201129/8	Method Blank	Total/NA	Water	8260C	

Analysis Batch: 201180

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-66696-31	MW-1008-20140904-01	Total/NA	Water	8260C	
480-66696-32	MW-1010M-20140904-01	Total/NA	Water	8260C	

TestAmerica Buffalo

QC Association Summary

Client: ERM-Northeast TestAmerica Job ID: 480-66696-1
Project/Site: IDS Wayland

GC/MS VOA (Continued)

Analysis Batch: 201180 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-66696-33	MW-1010D-20140904-02	Total/NA	Water	8260C	
480-66696-34	MW-1011-20140904-01	Total/NA	Water	8260C	
480-66696-35	MW-1016D-20140904-01	Total/NA	Water	8260C	
480-66696-36	MW-1009-20140904-01	Total/NA	Water	8260C	
480-66696-37	DUP-001-20140904-01	Total/NA	Water	8260C	
480-66696-38	DUP-002-20140904-01	Total/NA	Water	8260C	
480-66696-39	SEN-3-20140904-01	Total/NA	Water	8260C	
480-66696-40	SEN-2M-20140904-01	Total/NA	Water	8260C	
480-66696-41	SEN-2D-20140904-01	Total/NA	Water	8260C	
LCS 480-201180/5	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-201180/6	Lab Control Sample Dup	Total/NA	Water	8260C	
MB 480-201180/8	Method Blank	Total/NA	Water	8260C	

10

Client: ERM-Northeast

Project/Site: IDS Wayland

Lab Sample ID: 480-66696-1

Matrix: Water

Matrix: Water

Date Collected: 09/04/14 11:11 Date Received: 09/05/14 00:30

Client Sample ID: TB-001-20140904-01

Batch Dilution Batch Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 200987 09/05/14 16:41 GTG TAL BUF

Lab Sample ID: 480-66696-2

Client Sample ID: MW-217D-20140904-01 Date Collected: 09/04/14 11:35 Matrix: Water

Date Received: 09/05/14 00:30

Batch Batch Dilution Batch Prepared Method Factor Prep Type Type Run Number or Analyzed Analyst Lab Total/NA 8260C 200987 09/05/14 17:05 GTG TAL BUF Analysis

Client Sample ID: MW-217M-20140904-01 Lab Sample ID: 480-66696-3

Date Collected: 09/04/14 11:25 Matrix: Water

Date Received: 09/05/14 00:30

Batch Batch Dilution Batch Prepared Prep Type Method Run Factor Number or Analyzed Analyst Type 200987 Total/NA Analysis 8260C 09/05/14 17:28 GTG TAL BUF

Client Sample ID: MW-217S-20140904-01 Lab Sample ID: 480-66696-4

Date Collected: 09/04/14 11:15

Date Received: 09/05/14 00:30

Batch Dilution Batch Batch Prepared Method Prep Type Туре Factor Number or Analyzed Run Analyst Lab Total/NA Analysis 8260C 200987 09/05/14 17:53 GTG TAL BUF

Client Sample ID: MW-1024D-20140904-01 Lab Sample ID: 480-66696-5

Date Collected: 09/04/14 09:50 **Matrix: Water**

Date Received: 09/05/14 00:30

Batch Dilution Batch Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab TAL BUF Analysis 8260C Total/NA 200987 09/05/14 18:16 GTG

Client Sample ID: MW-1025M-20140904-01 Lab Sample ID: 480-66696-6

Date Collected: 09/04/14 09:20 **Matrix: Water**

Date Received: 09/05/14 00:30

Batch Batch Dilution Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 09/06/14 14:35 GTG TAL BUF Client: ERM-Northeast Project/Site: IDS Wayland

Lab Sample ID: 480-66696-7

Matrix: Water

Client Sample ID: MW-1025D-20140904-01

Client Sample ID: MW-1019B-20140904-01

Date Collected: 09/04/14 09:00 Date Received: 09/05/14 00:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	201080	09/06/14 03:44	CXM	TAL BUF

Lab Sample ID: 480-66696-8

Matrix: Water

Date Collected: 09/04/14 08:50
Date Received: 09/05/14 00:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			201080	09/06/14 04:10	CXM	TAL BUF

Client Sample ID: MW-1020-20140904-01 Lab Sample ID: 480-66696-9

Date Collected: 09/04/14 08:20 Matrix: Water
Date Received: 09/05/14 00:30

Batch Batch Dilution Batch Prepared

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	201080	09/06/14 04:36	CXM	TAL BUF

Client Sample ID: MW-1018-20140904-01 Lab Sample ID: 480-66696-10

Date Collected: 09/04/14 10:45 Matrix: Water

Date Received: 09/05/14 00:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	201129	09/06/14 15:00	GTG	TAL BUF

Client Sample ID: MW-1017D-20140904-01 Lab Sample ID: 480-66696-11

Date Collected: 09/04/14 10:30 Matrix: Water

Date Received: 09/05/14 00:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	201080	09/06/14 05:27	CXM	TAL BUF
Total/NA	Analysis	8260C	DL	2	201129	09/06/14 15:26	GTG	TAL BUF

Client Sample ID: MW-1015D-20140904-01 Lab Sample ID: 480-66696-12

Date Collected: 09/04/14 10:10 Matrix: Water

Date Received: 09/05/14 00:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			201080	09/06/14 05:52	CXM	TAL BUF

TestAmerica Buffalo

10

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast Project/Site: IDS Wayland

Client Sample ID: MW-1033-20140904-01 Lab Sample ID: 480-66696-13 Date Collected: 09/04/14 08:50

Matrix: Water

Date Received: 09/05/14 00:30

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis 8260C 201080 09/06/14 06:18 CXM TAL BUF

Client Sample ID: MW-1027-20140904-01 Lab Sample ID: 480-66696-14

Matrix: Water

Date Collected: 09/04/14 09:25 Date Received: 09/05/14 00:30

Batch Batch Dilution Batch Prepared Method Factor Number Prep Type Type Run or Analyzed Analyst Lab CXM TAL BUF Total/NA Analysis 8260C 201080 09/06/14 06:43

Client Sample ID: MW-1028-20140904-01 Lab Sample ID: 480-66696-15

Date Collected: 09/04/14 09:10 **Matrix: Water**

Date Received: 09/05/14 00:30

Dilution Batch Batch Prepared Batch Method Factor Number or Analyzed Prep Type Туре Run Analyst Lab Total/NA Analysis 8260C 201080 09/06/14 07:08 CXM TAL BUF

Client Sample ID: MW-1030-20140904-01 Lab Sample ID: 480-66696-16

Date Collected: 09/04/14 09:50 Matrix: Water

Date Received: 09/05/14 00:30

Dilution Batch Batch Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 201080 09/06/14 07:34 CXM TAL BUF

Client Sample ID: MW-1031-20140904-01 Lab Sample ID: 480-66696-17

Date Collected: 09/04/14 10:10 Matrix: Water

Date Received: 09/05/14 00:30

Analysis

8260C

Total/NA

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 8260C 201129 09/06/14 15:52 GTG TAL BUF Total/NA Analysis

Client Sample ID: MW-1032-20140904-01 Lab Sample ID: 480-66696-18

Date Collected: 09/04/14 10:25 **Matrix: Water** Date Received: 09/05/14 00:30

201129

09/06/14 16:17

GTG

TAL BUF

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab

TestAmerica Buffalo

Client: ERM-Northeast

Project/Site: IDS Wayland

Prep Type

Prep Type Total/NA

Total/NA

Client Sample ID: MW-1022-20140904-01

Batch

Туре

Analysis

Batch

Method

8260C

Date Collected: 09/04/14 11:00 Date Received: 09/05/14 00:30

Lab Sample ID: 480-66696-19

Lab Sample ID: 480-66696-20

Lab Sample ID: 480-66696-21

Lab Sample ID: 480-66696-22

Lab Sample ID: 480-66696-23

Lab Sample ID: 480-66696-24

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Batch Prepared Number or Analyzed Analyst

GTG

TAL BUF

Client Sample ID: MW-1023-20140904-01

Date Collected: 09/04/14 10:40

Date Received: 09/05/14 00:30

Batch	Batch		Dilution	Batch	Prepared		
Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
 Analysis	8260C			201129	09/06/14 17:09	GTG	TAL BUF

Dilution

Factor

201129

09/06/14 16:43

Run

Client Sample ID: MW-1013-20140904-01

Date Collected: 09/04/14 10:50

Date Received: 09/05/14 00:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			201129	09/06/14 17:35	GTG	TAL BUF

Client Sample ID: MW-1034-20140904-01

Date Collected: 09/04/14 11:30

Date Received: 09/05/14 00:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			201129	09/06/14 18:00	GTG	TAL BUF

Client Sample ID: DUP-004-20140904-01

Date Collected: 09/04/14 11:11

Date Received: 09/05/14 00:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			201129	09/06/14 18:26	GTG	TAL BUF

Client Sample ID: DUP-003-20140904-01

Date Collected: 09/04/14 11:11

Date Received: 09/05/14 00:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	201129	09/06/14 18:51	GTG	TAL BUF

TestAmerica Buffalo

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast Project/Site: IDS Wayland

Client Sample ID: MW-1001M-20140904-01

Date Collected: 09/04/14 13:25 Date Received: 09/05/14 00:30

Lab Sample ID: 480-66696-25

Matrix: Water

Batch

Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis 8260C 201129 09/06/14 19:17 GTG TAL BUF

Client Sample ID: MW-1001B-20140904-01

Date Collected: 09/04/14 09:00 Date Received: 09/05/14 00:30

Lab Sample ID: 480-66696-26

Matrix: Water

Batch Batch Dilution Batch Prepared Method Factor Number Prep Type Type Run or Analyzed Analyst Lab TAL BUF Total/NA Analysis 8260C 201129 09/06/14 19:42 GTG

Dilution

Factor

Batch

Number

201129

Prepared

or Analyzed

09/06/14 20:08

10

Client Sample ID: MW-1003-20140904-01

Date Collected: 09/04/14 08:50 Date Received: 09/05/14 00:30

Lab Sample ID: 480-66696-27

Matrix: Water

Batch

Prep Type

Total/NA Analysis 8260C

Туре

Analyst Lab GTG TAL BUF

Client Sample ID: MW-1004-20140904-01

Date Collected: 09/04/14 08:45 Date Received: 09/05/14 00:30

Lab Sample ID: 480-66696-28

Matrix: Water

Dilution Batch Batch Batch Prepared Analyst Prep Type Type Method Run Factor Number or Analyzed Lab Total/NA Analysis 8260C 201129 09/06/14 20:33 GTG TAL BUF

Run

Client Sample ID: MW-1005-20140904-01

Batch

Method

Date Collected: 09/04/14 09:45 Date Received: 09/05/14 00:30

Lab Sample ID: 480-66696-29

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 8260C 09/06/14 20:58 GTG TAL BUF Total/NA Analysis

201129

Client Sample ID: MW-1006-20140904-01

Date Collected: 09/04/14 09:25 Date Received: 09/05/14 00:30

Lab Sample ID: 480-66696-30

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 201129 09/06/14 21:24 GTG TAL BUF Dilution

Factor

Batch

Number

201180

201180

Prepared

or Analyzed

09/08/14 00:51

09/08/14 01:17

10

Client: ERM-Northeast Project/Site: IDS Wayland

Prep Type

Total/NA

Total/NA

Client Sample ID: MW-1008-20140904-01

Batch

Type

Analysis

Date Collected: 09/04/14 09:35 Date Received: 09/05/14 00:30

Lab Sample ID: 480-66696-31

Matrix: Water

Client Sample ID: MW-1010M-20140904-01

Batch

Method

8260C

8260C

Date Collected: 09/04/14 12:45 Date Received: 09/05/14 00:30

Lab Sample ID: 480-66696-32

Matrix: Water

Batch Batch Dilution Batch Prepared Method Factor Number Prep Type Type Run or Analyzed

Run

Lab Sample ID: 480-66696-33

Client Sample ID: MW-1010D-20140904-02

Analysis

Date Collected: 09/04/14 12:45 Date Received: 09/05/14 00:30

Analyst

CXM

Analyst

TAL BUF

Lab

TAL BUF

CXM

Matrix: Water

Dilution Batch Batch Prepared Batch Method Factor Number or Analyzed Prep Type Туре Run Analyst Lab Total/NA Analysis 8260C 201180 09/08/14 01:42 CXM TAL BUF

Client Sample ID: MW-1011-20140904-01

Date Collected: 09/04/14 10:00 Date Received: 09/05/14 00:30

Lab Sample ID: 480-66696-34

Matrix: Water

Dilution Batch Batch Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 201180 09/08/14 02:08 CXM TAL BUF

Client Sample ID: MW-1016D-20140904-01

Date Collected: 09/04/14 13:00

Lab Sample ID: 480-66696-35

Matrix: Water

Date Received: 09/05/14 00:30

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 8260C 201180 09/08/14 02:33 CXM TAL BUF Total/NA Analysis

Client Sample ID: MW-1009-20140904-01

Date Collected: 09/04/14 13:15

Date Received: 09/05/14 00:30

Lab Sample ID: 480-66696-36

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 201180 09/08/14 02:59 CXM TAL BUF

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast

Project/Site: IDS Wayland

Lab Sample ID: 480-66696-37

Matrix: Water

Date Collected: 09/04/14 11:11 Date Received: 09/05/14 00:30

Client Sample ID: DUP-001-20140904-01

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Total/NA Analysis 8260C 201180 09/08/14 03:25 CXM TAL BUF

Lab Sample ID: 480-66696-38

Client Sample ID: DUP-002-20140904-01 Date Collected: 09/04/14 12:12 Matrix: Water

Date Received: 09/05/14 00:30

Batch Batch Dilution Batch Prepared Method Factor Number Prep Type Type Run or Analyzed Analyst Lab TAL BUF Total/NA Analysis 8260C 201180 09/08/14 03:50 CXM

Client Sample ID: SEN-3-20140904-01 Lab Sample ID: 480-66696-39

Date Collected: 09/04/14 12:50 **Matrix: Water**

Date Received: 09/05/14 00:30

Dilution Batch Batch Prepared Batch Method Factor Number or Analyzed Prep Type Туре Run Analyst Lab Total/NA Analysis 8260C 201180 09/08/14 04:15 CXM TAL BUF

Client Sample ID: SEN-2M-20140904-01 Lab Sample ID: 480-66696-40

Date Collected: 09/04/14 13:05 **Matrix: Water**

Date Received: 09/05/14 00:30

Dilution Batch Batch Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 201180 09/08/14 04:40 CXM TAL BUF

Client Sample ID: SEN-2D-20140904-01 Lab Sample ID: 480-66696-41

Date Collected: 09/04/14 13:00 Matrix: Water

Date Received: 09/05/14 00:30

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 201180 09/08/14 05:06 CXM TAL BUF Total/NA Analysis 8260C

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

10

TestAmerica Job ID: 480-66696-1

Client: ERM-Northeast Project/Site: IDS Wayland

Laboratory: TestAmerica Buffalo

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Arkansas DEQ	State Program	6	88-0686	07-06-15
California	State Program	9	1169CA	09-30-14 *
Connecticut	State Program	1	PH-0568	09-30-14 *
Florida	NELAP	4	E87672	06-30-15
Georgia	State Program	4	N/A	03-31-15
Illinois	NELAP	5	200003	09-30-14 *
lowa	State Program	7	374	03-01-15
Kansas	NELAP	7	E-10187	01-31-15
Kentucky (DW)	State Program	4	90029	12-31-14
Kentucky (UST)	State Program	4	30	03-31-15
Louisiana	NELAP	6	02031	06-30-14 *
Maine	State Program	1	NY00044	12-04-14
Maryland	State Program	3	294	03-31-15
Massachusetts	State Program	1	M-NY044	06-30-15
Michigan	State Program	5	9937	03-31-15
Minnesota	NELAP	5	036-999-337	12-31-14
New Hampshire	NELAP	1	2337	11-17-14
New Jersey	NELAP	2	NY455	06-30-15
New York	NELAP	2	10026	03-31-15
North Dakota	State Program	8	R-176	03-31-14 *
Oklahoma	State Program	6	9421	08-31-15
Oregon	NELAP	10	NY200003	06-09-15
Pennsylvania	NELAP	3	68-00281	07-31-15
Rhode Island	State Program	1	LAO00328	12-30-14
Tennessee	State Program	4	TN02970	03-31-15
Texas	NELAP	6	T104704412-11-2	07-31-15
USDA	Federal		P330-11-00386	11-22-14
√irginia	NELAP	3	460185	09-14-14 *
Washington	State Program	10	C784	02-10-15
West Virginia DEP	State Program	3	252	09-30-14 *
Wisconsin	State Program	5	998310390	08-31-15

 $^{^{\}star}$ Certification renewal pending - certification considered valid.

TestAmerica Buffalo

Method Summary

Client: ERM-Northeast Project/Site: IDS Wayland TestAmerica Job ID: 480-66696-1

						_
_	_		_			

Method
8260CMethod DescriptionProtocol
MA DEPLaboratoryTAL BUF

Protocol References:

MA DEP = Massachusetts Department Of Environmental Protection

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

5

7

8

40

11

10

14

15

Sample Summary

Client: ERM-Northeast Project/Site: IDS Wayland TestAmerica Job ID: 480-66696-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-66696-1	TB-001-20140904-01	Water	09/04/14 11:11	09/05/14 00:30
480-66696-2	MW-217D-20140904-01	Water	09/04/14 11:35	09/05/14 00:30
480-66696-3	MW-217M-20140904-01	Water	09/04/14 11:25	09/05/14 00:30
480-66696-4	MW-217S-20140904-01	Water	09/04/14 11:15	09/05/14 00:30
480-66696-5	MW-1024D-20140904-01	Water	09/04/14 09:50	09/05/14 00:30
480-66696-6	MW-1025M-20140904-01	Water	09/04/14 09:20	09/05/14 00:30
480-66696-7	MW-1025D-20140904-01	Water	09/04/14 09:00	09/05/14 00:30
480-66696-8	MW-1019B-20140904-01	Water	09/04/14 08:50	09/05/14 00:30
480-66696-9	MW-1020-20140904-01	Water	09/04/14 08:20	09/05/14 00:30
480-66696-10	MW-1018-20140904-01	Water	09/04/14 10:45	09/05/14 00:30
480-66696-11	MW-1017D-20140904-01	Water	09/04/14 10:30	09/05/14 00:30
480-66696-12	MW-1015D-20140904-01	Water	09/04/14 10:10	09/05/14 00:30
480-66696-13	MW-1033-20140904-01	Water	09/04/14 08:50	09/05/14 00:30
480-66696-14	MW-1027-20140904-01	Water	09/04/14 09:25	09/05/14 00:30
480-66696-15	MW-1028-20140904-01	Water	09/04/14 09:10	09/05/14 00:30
480-66696-16	MW-1030-20140904-01	Water	09/04/14 09:50	09/05/14 00:30
480-66696-17	MW-1031-20140904-01	Water	09/04/14 10:10	09/05/14 00:30
480-66696-18	MW-1032-20140904-01	Water	09/04/14 10:25	09/05/14 00:30
480-66696-19	MW-1022-20140904-01	Water	09/04/14 11:00	09/05/14 00:30
480-66696-20	MW-1023-20140904-01	Water	09/04/14 10:40	09/05/14 00:30
480-66696-21	MW-1013-20140904-01	Water	09/04/14 10:50	09/05/14 00:30
480-66696-22	MW-1034-20140904-01	Water	09/04/14 11:30	09/05/14 00:30
480-66696-23	DUP-004-20140904-01	Water	09/04/14 11:11	09/05/14 00:30
480-66696-24	DUP-003-20140904-01	Water	09/04/14 11:11	09/05/14 00:30
480-66696-25	MW-1001M-20140904-01	Water	09/04/14 13:25	09/05/14 00:30
480-66696-26	MW-1001B-20140904-01	Water	09/04/14 09:00	09/05/14 00:30
480-66696-27	MW-1003-20140904-01	Water	09/04/14 08:50	09/05/14 00:30
480-66696-28	MW-1004-20140904-01	Water	09/04/14 08:45	09/05/14 00:30
480-66696-29	MW-1005-20140904-01	Water	09/04/14 09:45	09/05/14 00:30
480-66696-30	MW-1006-20140904-01	Water	09/04/14 09:25	09/05/14 00:30
480-66696-31	MW-1008-20140904-01	Water	09/04/14 09:35	09/05/14 00:30
480-66696-32	MW-1010M-20140904-01	Water	09/04/14 12:45	09/05/14 00:30
480-66696-33	MW-1010D-20140904-02	Water	09/04/14 12:45	09/05/14 00:30
480-66696-34	MW-1011-20140904-01	Water	09/04/14 10:00	09/05/14 00:30
480-66696-35	MW-1016D-20140904-01	Water	09/04/14 13:00	09/05/14 00:30
480-66696-36	MW-1009-20140904-01	Water	09/04/14 13:15	09/05/14 00:30

Water

Water

Water

Water

Water

DUP-001-20140904-01

DUP-002-20140904-01

SEN-3-20140904-01

SEN-2M-20140904-01

SEN-2D-20140904-01

480-66696-37

480-66696-38

480-66696-39

480-66696-40

480-66696-41

3

4

6

8

9

11

12

14

15

09/05/14 00:30

09/05/14 00:30

09/05/14 00:30

09/05/14 00:30

09/05/14 00:30

09/04/14 11:11

09/04/14 12:12

09/04/14 12:50

09/04/14 13:05

09/04/14 13:00

Login Sample Receipt Checklist

Client: ERM-Northeast Job Number: 480-66696-1

Login Number: 66696 List Source: TestAmerica Buffalo

List Number: 1 Creator: Kolb, Chris M

Creator. Rold, Clins W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	ERM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

3

4

5

7

9

12

14

15

TestAmerica	TestAmerica Laboratories, Inc.		1 of C cocs	Sampler:	For Lab Use Only:	Walk-in Client:	Lab Sampling:	SDG No		Sample Specific Notes:							ody						k 性 对象 : 1.6 (2) (2) (2) (3)	ined longer than 1 month)	for Months	questions	Therm ID No.: 7+	9/4/17 143	Date/Time:	Date Time: 0630	Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013
1 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ť6	Date:	Carrier:					0									480-66696 Chain of Custody							Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	☐ Disposal by Lab ☐ Archive for	e ang	M	Company:	Company:	Company:	Form No.
Chain of Custody Record	ES RCRA Other:	Site Contact:	Lab Contact:			(N		ası	N/S	Ferbond Sa M mrotha B S S S S S	× = 2	Nr K	× 2 2	620	X	7 24	×nn	74 N	Xun	X 70 12	X	XXV		Sample Disposal (A fee may	Return to Client	4	Cooler Temp. (°C): Obs'd:	Preceived by:	Received by:	Received in Itaboratory by:	1:
Chain	ogram: Dw 🗌 NPDES	Lyndsey Colbura	Hr 7800	Analysis Turnaround Time	WORKING DAYS	rom Below	2 weeks	1 week 2 days	1 day	Sample Type (c=comp, G=Grab) Matrix Cont.	6 GW \$	(5 (50) 3	3	3			6 50 3	G GW 3	5 3	(J. 1)	G G 3	G 60 3	Section of the sectio	odes for the sample in the	Unknown	5695-542-3685		Date/Time:	Daté/Time: 9/4//9/6	Date/Time:	4
	Regulatory Program:	lanager:	TellFax: 617 Wile	Analysis T	CALENDAR DAYS	TAT if different from Below) [T) () 	Sample Sample Date Time	निषि ।।।।	914/14 1135	914/14 1125	SIII HIN6	914 (14 095C	0230 NING	911140900	9 14 CHO	9HIM 0820	5HO1 111 NB	050] N/MP	9MIM TOID	: 5=NaOH; 6= Other	Please List any EPA Waste Codes	Poison B	なり		Company:	Company:	Company:	
TestAmerica Westfield	Westfield, MA 01085 phone 413.572.4000 fax	ie	npany Name	De Bea	te/Zip Boston	Phone 617 6410 7800	8	Site:	PO#	Sample Identification	1 B-601-261469104-01	MW-217D-20190804-61	MW-217M-20140904-01	10-401012-2175-01	10-408041-014201-011	5MW-1025M-20140964-01	MW-1025D-20140904-01	10-40604102-96101-01Wo	MW- 1620-20140904-61	MW-1018-20140904-01	MW-1017D-26146964-61	MW-10150-20140904-01	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea Comments Section if the lab is to dispose of the sample.	Non-Hazard Hammable Skin Irritant	Special Instructions/QC Requirements & Comments:	Custody Seals Intact:	Relinquished by	Selinquished by	elinquished By: '	